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Abstract

This thesis describes the design and implementation of GPF+, a complete general
packet classification system developed using Nvidia CUDA for Compute Capabil-
ity 3.5+ GPUs. This system was developed with the aim of accelerating the ana-
lysis of arbitrary network protocols within network traffic traces using inexpensive,
massively parallel commodity hardware. GPF+ and its supporting components are
specifically intended to support the processing of large, long-term network packet
traces such as those produced by network telescopes, which are currently difficult
and time consuming to analyse.

The GPF+ classifier is based on prior research in the field, which produced a proto-
type classifier called GPF, targeted at Compute Capability 1.3 GPUs. GPF+ greatly
extends the GPF model, improving runtime flexibility and scalability, whilst main-
taining high execution efficiency. GPF+ incorporates a compact, lightweight register-
based state machine that supports massively-parallel, multi-match filter predicate
evaluation, as well as efficient arbitrary field extraction. GPF+ tracks packet com-
position during execution, and adjusts processing at runtime to avoid redundant
memory transactions and unnecessary computation through warp-voting. GPF+
additionally incorporates a 128-bit in-thread cache, accelerated through register
shuffling, to accelerate access to packet data in slow GPU global memory. GPF+
uses a high-level DSL to simplify protocol and filter creation, whilst better facil-
itating protocol reuse. The system is supported by a pipeline of multi-threaded
high-performance host components, which communicate asynchronously through
0MQ messaging middleware to buffer, index, and dispatch packet data on the host
system.

The system was evaluated using high-end Kepler (Nvidia GTX Titan) and entry-
level Maxwell (Nvidia GTX 750) GPUs. The results of this evaluation showed high
system performance, limited only by device side IO (600MBps) in all tests. GPF+
maintained high occupancy and device utilisation in all tests, without significant
serialisation, and showed improved scaling to more complex filter sets. Results
were used to visualise captures of up to 160 GB in seconds, and to extract and
pre-filter captures small enough to be easily analysed in applications such as Wire-
shark.
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1
Introduction

THIS thesis describes research conducted towards the construction of a fast
GPGPU (General Processing on Graphics Processing Units) packet clas-
sification and filtering system. The system is intended for the purpose

of providing high-speed analysis of arbitrary network protocol headers in large,
long-term packet traces. Packet traces are simple static recordings of all traffic in-
tercepted at a network interface, covering intervals ranging from seconds to years.
While long-term high-density captures provide a rich source of information for re-
searchers, network administrators and security professionals, large traces are both
difficult and tedious to mine, and are thus used sparingly as information sources.

This chapter introduces the conducted research, elaborating on the problems the
proposed solution seeks to alleviate, and the methods by which it was derived. The
chapter is broken down as follows:

• Section 1.1 introduces the problem domain, and provides a brief overview of
both packet classification and GPGPU processing.

• Section 1.2 succinctly describes the problem statement and how this research
aims to address it.

2
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• Section 1.3 provides an overview of the research conducted, describing the
research scope, methodology and goals.

• Section 1.4 provides an overview of the chapter structure of this thesis.

1.1 Research Context

Packet captures (also known as traces) are important resources in network and
security related development, administration and research, as they provide a rel-
atively complete and static record of all network communications arriving at and
sent from a network interface over a particular interval. Current mechanisms for
capture-based protocol analysis are expensive and time-consuming, however, mak-
ing the study of long term or high density traffic difficult. This research describes
the design and implementation of a functional, programmable general classifier
that uses Nvidia CUDA (Compute Unified Device Architecture) and compute cap-
ability 3.5+ graphics processors to greatly accelerate the analysis of arbitrary pro-
tocols stored in large captures.

This section aims to introduce the primary topics of this research, specifically
packet classification and general processing on GPUs (Graphics Processing Units).
The section begins with an overview of network telescopes, a notable application
of long term traffic captures to the study of network traffic, in order to introduce
the problems associated with long term network analysis. The remaining subsec-
tions introduce the packet classification and GPU accelerated processing domains
in greater detail, and briefly explain the benefits and problems associated with
general packet classification on GPU hardware.

1.1.1 IBR and Network Telescopes

Network telescopes [39, 62] are passive, low-interaction traffic collectors that promis-
cuously monitor an empty network block for incoming packets, and recording them
in a capture file for later analysis [62]. Network telescopes passively record de-
tected incoming traffic in packet captures, which are subsequently used to study
Internet Background Radiation (IBR): a constant background noise generated by
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remote hosts on the Internet, often over long periods. IBR is composed of both non-
productive but benign transmissions, and potentially hostile traffic [17, 93, 134].
As network telescopes monitor empty networks that cannot request traffic, all re-
ceived traffic is known to be unsolicited [62].

The packets which are collected and stored by the network telescope can be divided
into one of three general categories: back-scatter, misconfigured transmissions,
and malicious or hostile traffic [39]. Back-scatter comprises benign non-productive
transmissions resulting from misconfigured or spoofed packets that originated else-
where [17, 39], while misconfigured transmissions are typically produced by mis-
configured or malfunctioning remote hosts. The majority of IBR traffic is aggress-
ive or potentially hostile [39], including remote scans, packets with malicious pay-
loads, and a host of other virus and malware related transmissions.

Packets traces are collected by network telescopes over daily, weekly or monthly
intervals, and are stored in capture files for subsequent processing in traffic ana-
lysis tools, examples of which include Wireshark, TcpDump and Libtrace [39]. The
size of a network telescope has significant implications for the volume of data cap-
tured, and depends on the number of unique IP addresses contained in the network
block. For instance, assuming standard IPv4 block sizes, a telescope operating on
a small /24 network monitors a range of 28 = 256 unique addresses, while tele-
scopes operating on larger /16 and /8 networks monitor ranges of 216 = 65, 536 and
224 = 16, 777, 216 unique addresses respectively [39, 62]. As each unique address
receives its own share of unsolicited traffic, the volume of traffic collected over a
particular time delta scales with respect to the number of unique addresses being
monitored. Over long intervals, large network telescopes can produce captures that
are extremely time consuming to process in existing protocol analysis software [3].

Capture processing of this nature is impeded by two overarching problems. Firstly,
applying a general packet classification program to hundreds of millions of packets
is time consuming, and scales poorly to fast interface speeds. Secondly, contempor-
ary consumer-grade interfaces to high-capacity non-volatile storage, such as HDDs
(Hard Disk Drives) and SSDs (Solid State Drives), are relatively slow in compar-
ison to modern multi-gigabit network interfaces, which are becoming increasingly
common. These two factors often render the analysis of large or long-term traces
relatively impractical; in some instances, the time required to perform thorough
trace analysis far exceeds the interval over which the traffic was originally col-
lected, impeding the study of IBR, malware propagation, security incidents, and
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captured network traffic in general.

1.1.2 Packet Classification

Packet classification (also referred to as packet filtering) refers to processes which
identify or categorise network packets. Packet classifiers are ubiquitous compon-
ents in modern communication networks, and are employed in a variety of con-
texts including packet demultiplexing, routing, firewalls, intrusion detection, and
network analysis. One of the core problems associated with all packet classifiers
is their need to scale throughput to accommodate increasing bandwidth. This is
particularly true of classifiers deployed on live high-speed networks, as these can
easily bottleneck achievable packet throughput if they cannot keep up with incom-
ing traffic.

Network bandwidth has sustained exponential growth over the past three decades,
at a growth rate averaging roughly 50% percent each year between 1983 and 2014.
This relationship, known as Nielson’s Law of Internet Bandwidth [64], results in
significant pressure to develop faster and more efficient classification algorithms,
which in turn has lead to greater specialisation of classification functionality. Con-
temporary packet classifiers are extremely varied in construction, and are gener-
ally tailored for specific sub-domains according to their individual requirements.

The majority of packet classification research focuses on high-speed and low-latency
IP (Internet Protocol) specific classifiers; these algorithms are used extensively
in routing, firewalls and intrusion detection systems, and prioritise high speed
and low latency to minimise the impact of classification on network throughput
[113]. In general, these algorithms categorise packets based on five fields in the
IP, TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) head-
ers (source and destination address, source and destination port, and protocol),
often referred to as the IP 5-tuple [113]. IP specific algorithms are architectur-
ally diverse, and target a range of sequential and parallel platforms including
CPUs (Central Processing Units) [113], FPGAs (Field Programmable Gate Ar-
rays) [40, 41], TCAMs (Ternary Content Addressable Memory) [49, 109] and GPUs
[36, 122, 136].

General packet classifiers (or filtering algorithms), in contrast, focus on providing
the necessary analytic flexibility to process arbitrary protocols [9, 133]. This re-
quires viewing packet header data at a lower abstraction layer than specific fields
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in a predefined header, typically as bits or bytes in a stream [54]. Protocol inde-
pendent algorithms have historically been designed for serial execution on sequen-
tial processors such as CPUs, and rely heavily on decision trees and branching to
eliminate redundant computation [23, 54]. The flexibility they afford comes at the
expense of speed however, and general algorithms can typically sustain a fraction
of the throughput achievable by hardware accelerated 5-tuple algorithms [74].

1.1.3 General Processing on Graphics Processing Units

The application of GPU devices to non-graphical problems is referred to as GP-
GPU, and is typically employed to accelerate highly parallelisable, computationally
intensive functions [29]. The GPGPU paradigm utilises hundreds or thousands
of light-weight cores which concurrently execute thousands of individual threads,
organised into small, uniformly-sized SIMD (Single Instruction Multiple Data)
groups [87]. These SIMD (Single Instruction Multiple Data) units are referred
to as warps in CUDA and wave fronts in OpenCL (Open Compute Language) [45].

Due to the massive parallelism that GPUs expose, a well crafted GPGPU solution
to an appropriately phrased parallel problem can potentially improve throughput
over a CPU solution by between ten and one hundred fold. GPUs are extremely
sensitive to a wide variety of performance criteria, however, which can restrict
device utilisation (or occupancy), saturate memory resources, or significantly in-
crease operation latency if not adhered to [86]. GPUs handle heavy thread di-
vergence particularly poorly, serialising rather than parallelising branching code
within SIMD thread warps (or wave fronts) [86]. This can create significant diffi-
culties when porting solutions designed for CPUs, as these often employ branching
as an optimisation measure to avoid redundant code. Due to the inherent paral-
lelism of GPGPU programs, unaddressed or unavoidable performance bottlenecks
can cascade, which can result in throughputs comparable to, or even below, that of
a well-optimised CPU implementation in the worst cases [86, 125].

Despite these limitations, GPUs are an appealing platform for general packet clas-
sification for a number of reasons:

1. Packet classification is an inherently parallel process, applying a single pro-
gram or filter set to millions of individual packets [66].
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2. GPUs provide abundant and underutilised processing resources that execute
concurrently with, but separate from, the host CPU. As packet classification
is computationally expensive, offloading classification to a GPU can signific-
antly reduce CPU load, and thereby limit the impact of classification on the
performance of external processes and the operating system.

3. The high parallelism of GPU solutions allow them to expand across mul-
tiple devices with relative ease, which can be used to significantly improve
throughput [87].

4. GPUs are energy efficient, relatively inexpensive, and widely available com-
modity hardware.

GPU acceleration has been applied numerous times to packet classification in the
past few years, particularly in the IP filtering domain where highly parallel al-
gorithms are well established, and classification throughput is of the highest pri-
ority [36, 122, 136]. General classification for arbitrary protocols is an exception to
this trend however, with little related research conducted publicly in the GPGPU
domain. This is primarily due to the processing abstractions employed in general
algorithms, which rely heavily on divergence to eliminate redundant operations
[54]; this is an efficient and effective strategy on CPUs, but results in heavy seri-
alisation and significantly degraded performance when attempted on GPUs [86].
General algorithms also require more complex programs and internal state struc-
tures to handle arbitrary protocols and field types [9, 133], which is difficult to
implement efficiently on register-constrained GPUs.

1.2 Problem Statement

Large packet traces provide a wealth of useful information, both in terms of collect-
ive metrics and within individual packets [16, 17]. Accessing information contained
within large capture files can, however, be difficult, tedious and time consuming us-
ing traditional methods, and may in some cases require several hours or even days
of processing time to complete. This limits the usefulness of large captures, heavily
obfuscates the study of long-term traffic dynamics, and impedes the analysis and
exploration of large traces.
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This problem was partially addressed in prior research [66, 67, 70, 71], performed
by the author, in fulfilment of the degree of Master of Science. This research pro-
duced a highly parallel GPU-based approach to general packet classification, called
GPF (GPU Packet Filter). This approach incorporated ideas from 5-tuple rout-
ing algorithms [113] to construct a general algorithm tailored for parallel execu-
tion [66, 68, 71]. This prototype implementation prioritised device-side throughput
above all, and avoided all divergent processing and runtime flexibility that might
slow execution. Instead, GPF evaluated all defined filters against all packets, re-
gardless of applicability, and relied on compile time optimisation to eliminate re-
dundancies [66].

The approach achieved high throughputs for small sets of filters, but sacrificed
substantial runtime flexibility in doing so [72, 73]. In particular, the approach
could not handle variable length protocol headers (reducing flexibility, and thus
coverage) or adapt processing to packet data at runtime (affecting scalability to
complex filter sets) [73]. The solution did not address host-side infrastructure,
and while it executed at extremely high rates, packet capture reading consistently
bottlenecked performance (at that time facilitated by WinPcap1). In addition, no
external functions were developed to apply generated outputs in a meaningful or
useful way.

This research aims to fully revise and update the approach taken in GPF for
modern Nvidia Kepler micro-architecture GPUs2 [81, 86], sacrificing some of the
throughput attained to greatly improve the flexibility, scalability, efficiency and
usability. The resultant algorithm, referred to as GPF+, uses an improved, state-
based processing abstraction to efficiently adapt to packet contents at runtime,
providing sufficient flexibility to handle variable length headers and prune re-
dundant operations. In order to apply this algorithm to the problem of capture
analysis, an efficient multi-threaded classification pipeline is implemented along-
side the classifier. This pipeline is intended to provide an efficient mechanism to
access the contents of expansive packet captures, and produces small, ordered, and
non-volatile output files. These files are used by three external post-processors,
which perform visualisation, statistical analysis and data transformation functions
respectively. These functions have been included as examples to demonstrate the
usability of results.

1\url{http://www.winpcap.org/}
2Note that OpenCL and AMD hardware are not within the scope of this research.



1.3. RESEARCH OVERVIEW 9

1.3 Research Overview

This section provides an overview of the research performed during the develop-
ment of this thesis. The section discusses the scope set for this research, the meth-
odology by which the approach was developed into a functional experimental pro-
totype, and the goals the research aims to achieve.

1.3.1 Research Scope

The classification pipeline presented and tested in this thesis is a functional proto-
type suitable for testing and basic use, focussing on the foundations of a program-
mable general packet classification algorithm that executes efficiently on massively
parallel GPU hardware. This pipeline incorporates aspects from several rich do-
mains into the solution, each offering many possibilities beyond what can be feas-
ibly explored within the implementation of this project.

To maintain a manageable scope, the research focusses predominantly on the clas-
sification kernel and capture preprocessing functions, aiming to provide sufficient
functionality to perform basic classification on common protocols and their fields
at high speed. The implementation was scoped to facilitate sufficient flexibility to
handle Ethernet, IP, TCP, UDP and ICMP protocols and their standard fields at a
minimum. Mechanisms to parse and process list-based options fields were left out
of scope, as this functionality only applies to a small percentage of packets. Direct
and efficient support for optional fields and fields larger than 32 bits have addition-
ally been left out of scope, as they can both be handled indirectly through existing
mechanisms in the DSL . GPU acceleration is facilitated by the Nvidia CUDA API,
and requires Nvidia Geforce 700 series GPUs with a minimum compute capability
of 3.5 to function; earlier micro-architectures and other GPGPU platforms such as
OpenCL are left out of scope.

The DSL and example applications were considered a lower priority, as these com-
ponents execute briefly prior to and following the main classification process, and
thus have a less significant impact on achievable performance. The DSL was
scoped to include only the functionality required to generate programs from re-
usable high-level protocol definitions, and does not aim to develop or evaluate ad-
ditional compiler-specific functionality. Refining the DSL has been left to future
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work, after the classifier’s performance and functionality have been evaluated and
adjusted. The example applications are similarly limited to basic functionality, as
they are included primarily for the purposes of evaluating and demonstrating clas-
sification functionality and classifier usability, and not as critical components in
their own right.

1.3.2 Research Methodology

The research presented was developed through extensive and controlled experi-
mentation that focussed on maximising resource efficiency, system scalability and
data throughput while retaining as much flexibility as possible. The foundation of
the system is based on the approach used in GPF, optimised and expanded through
regular testing of functions, techniques and components during the course of de-
velopment.

In order to manage complexity, the classification system was divided into several
relatively distinct components that operate with some independence, and cooper-
ate primarily through asynchronous message passing. These components include:
a DSL that simplifies program generation; a preprocessor that efficiently reads,
indexes and buffers packet records for classification; and a GPU accelerated clas-
sification kernel that processes packets records. The development of each of these
components was guided by continuous and often extensive testing of potential ar-
chitecture alternatives. This was done to help identify the most efficient architec-
tures in terms of processing time and resource efficiency, and to help isolate and
exclude poorly performing approaches early on.

In addition to the components involved in the classification pipeline, the chosen
implementation also provides a selection of simple but powerful post-classification
tools which apply the computed results of classification to simplify the explora-
tion and analysis of large captures. These components were developed to serve
two functions; they provide verification for results produced by the system; and
demonstrate by example how such results can be applied to accelerate aspects of
protocol analysis. The example applications described facilitate capture visualisa-
tion, simple field analysis, and the distillation of pre-filtered captures respectively.

To evaluate the performance of the implemented system, testing was performed
using a small selection of captures (ranging from 2 to 160 GB) and a wide range of
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varied filter programs. Testing was divided into two parts, with the first focussing
in detail on the classifier’s performance in isolation, and the second exploring the
performance of the wider system from an end user perspective. This was done to
distinguish between the potential performance of the classification kernel in isola-
tion, and the throughput achievable in practice given slow read access to capture
files. Testing also briefly measured the achieved throughput of the included ex-
ample applications in order to evaluate the utility of the classifier’s outputs.

1.3.3 Research Goals

This section briefly summarises the goals and intended outcomes of this research.
One of the primary goals of the proof-of-concept implementation is to be useful in
and of itself, and not merely an interesting but isolated component within a concep-
tual or hypothetical system. By limiting the scope of the implementation to focus
specifically on large capture files, a valuable but underutilised resource, the imple-
mentation can provide a potential solution to a real but under-addressed problem
in the process of investigating flexible GPU based protocol analysis. The research
further aims to develop and evaluate the foundations of an approach suitable for
a wider range of network-related applications beyond capture processing (e.g. live
network monitoring, intrusion detection, detailed metrics calculation, etc.).

Accomplishing this involves meeting three sub-goals:

1. To extend the functionality and improve (in order of priority) the flexibility,
scalability, efficiency and usability of the classification approach originally
derived in GPF. Some additional clarification is necessary, as these terms can
be ambiguous without sufficient context.

• Flexibility refers to the range of protocols and field types that the sys-
tem can process, and the range of functions that the system can perform.
To improve upon the flexibility of GPF, which executed as a purely in-
terpretive filtering processor, the GPF+ approach uses a more complex
abstraction that maintains internal state and tracks select protocol and
packet metadata. This allows for more flexibility with respect to the
types of packets that can be processed, and the types of information that
can be extracted from them. In particular, the new approach provides



1.3. RESEARCH OVERVIEW 12

support for handling optional fields and variable length headers, as well
as field value extraction, which were not possible in GPF. Flexibility is
primarily addressed by the GPF+ classification kernel and it’s associated
DSL, discussed in Chapters 6 and 7 respectively.

• Scalability refers to the computational efficiency with which the classi-
fier handles larger captures and classification programs. An important
goal of the GPF+ classifier is to provide linear or better scaling, in order
to handle terabyte-scale captures spanning trillions of packets in reas-
onable time-frames without saturating memory or compute resources on
either the host or the GPU. While the current implementation of GPF+ is
intended for deployment on a single GPU, the architecture is compatible
with a multi-GPU approach that would allow efficient scaling of through-
put based on the number of GPUs utilised. Scalability is discussed in
Chapter 5 and Chapter 6.

• Efficiency is in many respects related to scalability, but in this context
refers more specifically to the efficient utilisation of GPU compute and
memory resources. GPF+ is designed to execute with full GPU multipro-
cessor occupancy on modern Kepler and Maxwell chipsets, while min-
imising costly global memory reads and improving coalescing through a
local, register based cache. The classifier uses fast, low-latency constant
and register memory to accelerate access to runtime constants and vari-
ables, and applies efficient warp voting and register shuffling intrinsic
functions to facilitate computational pruning and inter-thread commu-
nication respectively. The relevant GPGPU concepts are addressed in
Chapter 2, while their application within the classifier to maximise effi-
ciency is discussed in Chapter 6.

• Usability refers to the ease with which programs and their component
protocols can be constructed and reused. GPF relied on a relatively
simple programming abstraction
through a low-level DSL, which lacked mechanisms for compartmental-
isation, runtime optimisation, and code reuse. GPF+ uses a more robust
programming abstraction and DSL that greatly simplifies program con-
struction, facilitates code reuse through protocol definitions, and facilit-
ates automatic runtime optimisation through protocol layering. Usabil-
ity is primarily addressed in Chapter 7, although many aspects derive
from the classification architecture discussed in Chapter 6.
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2. To implement efficient parallel host-side architecture to read, index and buf-
fer packet data as quickly as is possible within the limits of storage IO, in
order to minimise host-side interference and limit its impact on achievable
classification performance. These supporting components are discussed in
Chapter 5.

3. To implement a selection of example applications that employ the outputs of
the classification system to accelerate aspects of packet analysis, in order to
assess the usefulness of results in a real-world context. This goal is addressed
through three separate proof-of-concept applications that utilise the outputs
of the classifier and its pipeline to analyse, visualise and reduce packet cap-
tures. these applications are discussed in Chapter 8.

These goals are evaluated in Chapter 12.

1.4 Document Overview

The chapters in the remainder of this document are divided into four broad parts.
In Part II, the background information regarding packet classification and GPGPU
is provided. Part III presents a detailed overview of the design and implementation
of the GPU accelerated classification pipeline and its various components. The
implementation is subsequently evaluated through extensive testing, as described
in Part IV. Part V concludes with an overview of implementation and results, and
a consideration of extensions and future work. A more detailed breakdown of the
chapters in each part follows:

Part II

This part deals with the research background, exploring GPGPU, network traffic
and packet classification in some detail.

Chapter 2 provides a brief introduction to GPGPU and CUDA, and details import-
ant functions, optimisation strategies and hardware limitations which influenced
or shaped the classifier’s implementation.
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Chapter 3 provides a detailed overview of packets, protocols, and packet capture
files. The chapter also introduces pcap and Wireshark, which are commonly used
to interface with captures and live traffic.

Chapter 4 discusses packet classification in detail, and summarises the results
of previous work in utilising CUDA to perform protocol independent classification.
This research forms the foundation for the implementation discussed in Part III.
This chapter concludes with a brief overview of related work in the wider field of
GPU accelerated packet classification.

Part III

This part of the document describes the implementation of the classification system
and its various components.

Chapter 5 introduces the implemented proof-of-concept system, its abstract pro-
cessing methodology, and the high-level components of which it is comprised. This
chapter additionally describes the supporting host side components of the classi-
fication pipeline responsible for reading captures, indexing packets, transferring
data to and from the GPU device, and writing results to disk.

Chapter 6 introduces the GPU classification approach, and describes both its high
level architecture and implementation in detail. In addition to describing the two
primary classification processes, the chapter describes the various memory regions
used to facilitate classification, and describes the caching mechanism employed to
minimise global memory interactions when processing packet data.

Chapter 7 describes the domain specific language used to compile high-level pro-
grams into executable instruction streams for the classifier. The chapter introduces
the grammar syntax and explains the process by which the language is compiled
to an instruction byte-stream. The compilation process is discussed after classific-
ation as it is heavily dependent on the architecture of the classifier, and is difficult
to describe without first describing the system it supports.

Chapter 8 describes three post-processor applications which use the results of the
classification pipeline to significantly accelerate the process of mining large packet
traces. These applications include high-level interactive graph-based visualiza-
tion, capture reduction, and simple field value analysis. These three applications
provide examples of how the results of classification may be applied.
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Part IV

This part of the document is dedicated to the evaluation of the classification kernel
and the the wider classification process.

Chapter 9 provides an overview of the testing configuration and approach, and
details the packet captures and filter programs used during evaluation.

Chapter 10 presents and discusses the performance results and gathered metrics
for the GPU classification kernel, as applied to three captures of varying size and
using nine programs of varying complexity. This chapter ignores host-side pro-
cessing and file access overhead to specifically focus on the potential throughput of
the classification process.

Chapter 11 discusses the performance results collected from the wider system and
example applications, inclusive of all GPU and host functions. This chapter aims
to illustrate actual achievable capture processing performance of the system from
a user perspective.

Part V

Chapter 12 concludes the document with a summary of the findings of each chapter,
and an overview of some potential functions, enhancements and extensions that
could be incorporated in future work.
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2
General Processing on Graphics

Processing Units

NVIDIA CUDA1 is a platform that enables massively parallel computation
on Nvidia GPU hardware [87]. This chapter introduces the fundamental
concepts of CUDA programming relevant to this thesis, focussing spe-

cifically on Kepler micro-architecture introduced in 2013. The chapter is structured
as follows:

• Section 2.1 introduces the GPGPU domain, providing a brief history of the
evolution of GPGPU devices and introducing CUDA.

• Section 2.2 briefly summarises the evolution of CUDA micro-architecture,
listing the most significant changes between each multi-processor generation.

• Section 2.3 describes the CUDA programming model, introducing the concept
of CUDA kernels and how they achieve parallelism through threads and
thread warps.

1http://www.nvidia.com/object/cuda_home_new.html
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• Section 2.4 provides an overview of the Kepler multi-processor [81, 87] and
its features.

• Section 2.5 discusses the large but comparatively slow global memory space,
housed in GPU DRAM. This section focuses on the various mechanisms avail-
able to improve global memory performance.

• Section 2.6 considers on-chip memory resources, including constant, shared
and register memory. These memory regions facilitate much higher through-
puts than global memory, but have extremely limited capacity.

• Section 2.7 focuses on two hardware accelerated function types that facilitate
fast and synchronisation free inter-warp communication.

• Section 2.8 explores several important considerations relating to the effi-
ciency and performance of CUDA programs. These topics include the trans-
mission of data to and from the device, device occupancy, execution streams
and concurrent execution, and instruction throughput optimisation.

• Section 2.9 provides a summary of topics covered in the chapter

2.1 Introduction to GPGPU

General Processing on Graphics Processing Units (GPGPU) is a sub-domain of
high-performance computing. GPGPU uses the massively parallel capabilities of
modern graphics cards to accelerate computationally expensive and data intensive
parallel tasks beyond computer graphics. This section provides a concise introduc-
tion to the GPGPU paradigm and the CUDA platform, and provides a foundation
for the remainder of the chapter.

2.1.1 Brief History of GPGPU

The term Graphics Processing Unit was first coined in 1999 when Nvidia intro-
duced the Geforce 256, marketed as “the world’s first GPU” [76]. This slogan aimed
to differentiate the Geforce 256’s unified processing chip-set from prior graphics
accelerator cards, which were composed of video memory and a range of hardware
accelerated special function units.
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While the Geforce 256 incorporated transform, lighting, setup and rendering func-
tionality on to a single chip [76], it was the Geforce 3 chip-set introduced in 2001
that provided the first custom programmable vertex and pixel shaders to sup-
plement the previously fixed graphics pipeline [77]. This architectural change
provided a relatively simple programmable interface to the graphics hardware,
introducing a level of flexibility that allowed researchers to investigate and ap-
ply GPUs to highly parallel, non-graphical problems in order to accelerate their
performance. This lead to the development of the Brook language specification
at Stanford in 2003, an extension to the ANSI C specification designed to easily
facilitate data parallelism [14].

In 2006, with the release of Microsoft DirectX10 and the Unified Shading Model,
vertex and pixel shaders were combined to form a single unified shading core
[11]. This provided greater flexibility, and improved performance in both the well-
established graphical domain and the relatively new GPGPU domain. Hardware
vendors capitalised on this evolution by introducing their own low-level APIs, which
removed the graphical abstraction and provided programmers with more direct ac-
cess to underlying hardware.

Early GPGPU capable cards were comparatively limited in terms of performance
and functionality, and their programs were difficult to both program and debug.
Subsequent generations of GPGPU micro-architecture have addressed many of
these issues, incrementally scaling processing power whilst relaxing performance
constraints, adding functionality, reducing power draw and improving tool chain
support [87]. Modern GPUs provide thousands of cores, gigabytes of device memory,
and a variety of caches to accelerate GPGPU programs and simplify GPGPU pro-
gramming.

Currently, several GPGPU-capable APIs are available, including Nvidia’s CUDA
(Compute Unified Device Architecture) [87], Khronos Group’s OpenCL (Open Com-
pute Language) [44], and Microsoft’s DirectCompute [78].

2.1.2 Compute Unified Device Architecture (CUDA)

The approach developed in this research is designed for and utilises the Nvidia
CUDA API (Application Programming Interface), and employs a small selection
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of functions that are currently specific to recent Nvidia GPUs. This subsection
provides a basic overview of the API and its history.

CUDA v1.0 was introduced in 2007 [126], and has since become the dominant
paradigm for massively parallel scientific computing [52]. The CUDA API is cur-
rently in its seventh generation, and is supported by all recent Nvidia GPUs. In
addition to desktop and mobile GPUs, the Nvidia maintains the Tesla® processor
range specifically for professional GPGPU applications and scientific computing
[89]. These devices support additional GPGPU features exclusive to Tesla hard-
ware [75].

All CUDA devices have a Compute Capability (CC) rating which indicates the
device’s underlying architecture and the features and functions it supports. The
CC is divided into a major and minor revision number, delimited by a period. The
major revision number indicates the underlying micro-architecture of the device,
while the minor revision number indicates incremental improvements and exten-
sions to the major architecture [87]. The application discussed in this thesis was
designed for and developed using a Compute Capability 3.5 device. As such, dis-
cussion in this research will focus predominantly on compute capability 3.x devices
(Kepler micro-architecture) [79, 81], while drawing attention to relevant changes
in compute capability 5.x devices (Maxwell micro-architecture) [83, 84].

2.1.3 Benefits and Drawbacks

The GPGPU processing paradigm has numerous benefits and drawbacks. This sec-
tion summarises a few of these that are relevant to the current research, beginning
with a selection of important benefits:

• Processing Speed – Perhaps the most highly regarded benefit of the GPGPU
paradigm is the computational performance it is capable of achieving with
commodity hardware, given an appropriate parallelisable problem and a well
crafted solution.

• Resource Utilisation – GPU co-processors have significant computational power
which is rarely utilised outside of graphics intensive programs. The GPGPU
paradigm facilitates the utilisation of this spare processing power, thereby
freeing CPU cores and host resources for other tasks.
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Table 2.1: Comparison of PCIe aggregate, upstream and downstream transfer
bandwidth to GTX Titan device memory bandwidth [80, 96].

PCIe 2.x PCIe 3.x Geforce GTX Titan
Theoretical Bandwidth 16 GB/s (8/8) ≈ 32 GB/s (16/16) 280 GB/s

• Scalability – As GPGPU programs are intrinsically highly parallel, they scale
with relative ease to multiple devices on a single host, or to distributed hosts
on a network or in a cluster. Provided an appropriately scalable algorithm and
suitable program infrastructure are available, performance may be increased
by adding additional GPU hardware [87].

• Availability – GPUs are commodity hardware, and the majority of contem-
porary hosts thus support some form of GPU acceleration. This differenti-
ates the GPGPU paradigm from other massively parallel computational solu-
tions (such as FPGAs), which rely on specialised non-commodity hardware
not found on typical desktop machines.

• Cost – GPUs are a cost effective platform for high-performance computation,
as they are relatively inexpensive and provide high energy efficiency (or per-
formance per watt) [79, 84].

These benefits are counterbalanced by several draw backs to the paradigm.

• Transfer Overhead – One of the more problematic aspects of GPGPU based
solutions is the overhead associated with memory transfers between the host
and the device. GPUs rely on copies to and from host memory (whether staged
or streamed) to both sustain them with data to process, and to eventually re-
turn results on completion. In addition to the need to perform an additional
memory copy to make data available to the device, these copies are currently
performed through the PCIe (Peripheral Component Interconnect Express)
bus [96], which is bandwidth limited in comparison to GPU device memory
(see Table 2.1). As a result, transferring data to and from the GPU for pro-
cessing can present a potential bottleneck for data heavy applications [86].
This may be improved upon in future architectures through technologies such
as NVLink [15, 25] (see Section 2.2).

• Problem Applicability – GPGPU is a paradigm intended specifically for massively
parallel computation, and requires a high level of task and instruction level
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parallelism to execute efficiently. As such, sequential solutions or those which
rely heavily on context-sensitive branching perform poorly on GPGPU hard-
ware [86].

• Complexity and Accessibility – GPGPU programming can have a relatively
steep initial learning curve due to the differences between it and more tradi-
tional sequentially oriented languages. In addition, non-trivial solutions can
be much more difficult to conceptualise and debug, due to the vast numbers
of independent executing threads. Finally, GPGPU programs have relatively
limited on-chip resources and can be extremely sensitive to the structure of
program code; inefficiencies can easily slow performance by more than an or-
der of magnitude [86], and can be difficult to isolate. It is worth noting that
in these respects GPGPU APIs have improved significantly in recent years,
providing greatly relaxed performance restrictions and significantly improved
tool chain support to reduce complexity.

2.2 CUDA Micro-architectures

This section briefly outlines the evolution of the architecture of CUDA capable
GPUs, discussing in particular the major changes brought by each new generation
of chip-set. The GPF algorithm [66] on which this research is based (see Section
4.4) was developed to target Tesla micro-architecture devices [66], while the imple-
mentation discussed in Part III of this document was designed to operate on Kepler
and Maxwell micro-architectures. This section is intended to summarise the most
notable changes between these micro-architecture generations, and to discuss the
expected changes to Nvidia micro-architecture in its next iteration.

2.2.1 Tesla (CC 1.x)

The Tesla micro-architecture encapsulates the first CUDA enabled micro-
architecture developed and released by Nvidia; a name shared with the Nvidia
Tesla [89] brand of high-performance GPUs for scientific and industrial use. The
Tesla micro-architecture was introduced with the G80 chip-set (in Geforce 8 series
GPUs), initially released in late 2006, and remained in use until the arrival of
the Geforce 400 series in early 2010 [28]. Tesla micro-architecture introduced the
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basic components and structure of the CUDA API, but provided fewer registers
and less shared memory space on chip than all subsequent architectures [87]. In
addition, early Tesla cards (those with a compute capability of 1.0 or 1.1) had ex-
tremely strict requirements that had to be met in order to efficiently coalesce access
to device global memory – a feature which allows a single memory transaction to
service multiple threads simultaneously (see Section 2.5.1). These requirements
were greatly relaxed in compute capability 1.2 and 1.3 GPUs, but still required
care to avoid inefficient access patterns. This problem could be partially mitigated
through the use of the read-only texture cache.

2.2.2 Fermi (CC 2.x)

Fermi is the second generation of Nvidia CUDA-enabled micro-architecture, in-
troduced in early 2010, which included devices from the GTX 400 and GTX 500
family of graphics cards [28]. Fermi significantly increased the amount of on chip
resources available to threads, doubling the number of registers and quadrupling
the maximum amount of shared memory per multiprocessor to 64 KB (this would
have to be shared with the L1 cache, which could be configured to consume either
16 KB or 48 KB of shared memory resources) [87]. L2 caching of global memory
was additionally introduced, which greatly simplified global memory coalescing re-
quirements and improved the performance of global memory transactions. Fermi
also improved the performance of double precision floating point calculations, and
raised the maximum number of registers allocatable to a single thread from 32 to
63, among other improvements and optimisations [87].

2.2.3 Kepler (CC 3.x)

Fermi was succeeded in 2012 by the Kepler micro-architecture [79], which further
increased available resources on chip, and improved bandwidth between multipro-
cessors and global memory [81]. Kepler micro-architecture and compute capability
3.0 doubled the number of registers available on each multiprocessor (from 32 thou-
sand to 64 thousand [87]) and introduced the Read-Only (RO) cache [81], among
other improvements .

Compute capability 3.5 devices later expanded the maximum number of registers
allocatable to a single thread from 63 to 255, improved control of the RO cache, and
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introduced register shuffling as a fast alternative to shared memory for inter-warp
transfers [81]. Compute capability 3.5 and the GK110 chip-set additionally added
support for dynamic parallelism (which allows CUDA kernels to nest calls to other
kernels to create additional work at runtime) and Hyper-Q (which improves hand-
ling of concurrent streams of execution, allowing for true independence between
them).

2.2.4 Maxwell (CC 5.x)

Maxwell micro-architecture [84], introduced in 2014, is the most recent CUDA
micro-architecture. In comparison to the Kepler micro-architecture, Maxwell GPUs
provide reduced power consumption, expanded shared memory capacity, and in-
creasing overall processing efficiency. Maxwell architecture dissolved the L1 cache,
returning the full shared memory capacity to the user (CC 5.0). It also provided
faster native shared memory atomic functions, among other efficiency improve-
ments [83]. Second generation Maxwell devices (CC 5.2) expanded the size of
shared memory to 96 KB [83], thereby providing twice as much shared memory
capacity as Fermi and Kepler architectures per multiprocessor.

2.2.5 Future Architectures

The Pascal micro-architecture [15, 25] is the expected successor to the current Max-
well micro-architecture, and is due for release in 2016 [31]. While Pascal processors
are not yet available and do not yet have an assigned compute capability, the fea-
ture set of these processors focuses heavily on improving memory bandwidth both
on the device and between the GPU and host memory. This has potential im-
plications for GPGPU performance in the near future. The three most significant
features with respect to this research problem (3D memory, NVLink and Unified
Memory) [15, 25] will be briefly discussed below:

• 3D memory, also referred to as stacked DRAM, is a new memory architecture
that stacks multiple memory chips on top of each other, greatly improving
memory bandwidth from hundreds to thousands of bits [31]. This is expec-
ted to raise maximum throughput between memory and multiprocessors by
roughly a factor of three, and increase maximum device memory capacity
from 12 GB to 32 GB [15].
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• NVLink is a high-speed interface that replaces the PCIe bus as the mechan-
ism by which GPUs communicate with the host and other GPUs. NVLink
improves performance over the PCIe bus by between 5x and 12x, allowing
GPUs direct access to host memory at similar speeds to that of a CPU [15].
NVLink also increases the number of GPUs supported by a single CPU from
four to eight.

• Pascal is expected to provide hardware support for Unified Memory through
NVLink and 3D memory, allowing CPUs direct access to GPU device memory
(and vice versa) at high speed, potentially eliminating the need to stage ex-
pensive copies between host and device memory in data intensive applications
[31]. Basic support for unified memory was introduced into the CUDA 6 API
[32], but relies on much slower memory architecture and the PCIe bus. Uni-
fied memory is thus currently aimed at reducing the complexity of writing
CUDA programs by eliminating the memory management component, rather
than providing a viable alternative for more intensive or performance-critical
applications.

In combination, these features promise dramatically improved memory perform-
ance for future CUDA devices and the GPGPU programs executing on them, allow-
ing for greater and more seamless cooperation between CPUs and GPUs. Pascal is
expected to be superseded by the Volta micro-architecture in 2018 [15].

2.3 CUDA Programming Model

The CUDA programming model is a programming abstraction designed to facilitate
massively parallel general processing in a GPU environment, with many elements
derived directly from underlying hardware. CUDA programs, known as kernels,
are written using CUDA C syntax (a subset of the C’99 language augmented to
facilitate massively parallel execution) and contained within CUDA files (typically
identified with the .cu extension). CUDA files may simultaneously contain C and
C++ code, as the Nvidia CUDA Compiler (NVCC) automatically separates out host-
side code and passes it to the default compiler installed on the system. The CUDA
Run-time API and CUDA Driver API facilitate communication and thus interop-
erability between the host-side process and the CUDA device, achieved through
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calls to the CUDA device drivers installed on the system. The host thread sched-
ules data transfers to and from the device, as well as the execution of kernels [87].
The host thread runs concurrently with kernel execution, allowing it to continue
processing independently and simultaneously with the device.

2.3.1 CUDA Kernels and Functions

CUDA programs are encapsulated within kernels, which are specially defined func-
tions that execute on GPU hardware but can be called from the host context. In
typical cases, kernels pass data to the device through the PCIe bus and write res-
ults to a device-side output array. They cannot return data to the host directly
(all kernels require a void return type), so output must always be written to a
device-accessible array and subsequently retrieved by the host thread. Device-side
memory persists outside of the context of a kernel’s execution, and may be passed
to subsequent kernels for additional or elective processing.

Kernels are supplemented by CUDA functions, which are completely interchange-
able with host side functions. As long as a function only accesses resources that are
available in both host and device contexts, it may be compiled to both CUDA device
code and host code for use in both contexts. This one-to-one mapping necessarily
implies that CUDA functions may return values and execute other functions, sim-
ilar to their host side equivalents. In addition to functions, CUDA supports most
standard C and C++ elements, including but not limited to: classes, structs, de-
cision operators (if, switch), and iteration operators (for, while, do).

Kernels are declared using the __global__ keyword, and only support a void

return type. CUDA functions are declared using the __device__ keyword, which
may be supplemented with the __host__ keyword if host side execution is also
required. All functions in the CUDA file with no prefix are implicitly assigned
the __host__ prefix (which may optionally be specified explicitly) and cannot be
called from within GPU functions. Listing 1 shows an example kernel which raises
each element of the array device_in to the power of power, writing results to
the array device_out. The calculated variable thread_id is used to index these
arrays such that each thread processes a different element. The built in registers
used in the calculation of thread_id are explored in the next subsection.
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Listing 1 Example CUDA kernel that calculates the nth power of each element in
array in, writing results to array out.

1 __device__ int NthPower(int value, int power) {
2 int out = 1;
3 for (int k = 0; k < power; k++) out *= value;
4 return out;
5 }
6
7 __global__ void ExampleKernel(int* device_in, int* device_out, int power){
8 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
9 device_out[thread_id] = NthPower(device_in[thread_id], power);

10 }

Table 2.2: Keywords for thread identification.
Keyword Components Description
gridDim x, y, z Blocks in each dimension of the grid.
blockDim x, y, z Threads in each dimension of the block.
blockIdx x, y, z Index of the block in each dimension of the grid.

threadIdx x, y, z Index of the thread in each dimension of the block.

2.3.2 Expressing Parallelism

Kernels execute a collection of threads, typically operating over a large region of
device memory, with each thread computing a result for a small segment of data
[87]. In order to manage thousands of independent threads effectively, kernels are
partitioned into thread blocks of up to a maximum of 1024 threads in compute
capability 3.x devices or above [87]. Thread blocks are conceptually positioned
within a one, two or three dimensional grid, which may contain millions of thread
blocks (up to [231 − 1, 216 − 1,216 − 1]) [87]. Each thread is aware of both its own
position within its block and its block’s position within the grid, and can use this
knowledge to calculate its global index in the thread pool. This index can then be
used to determine which elements of data to operate on, and where to write results
when the operations are completed [87]. A list of keywords which support thread
identification are provided in Table 2.2.

Each block is executed by a single multiprocessor, which allows all threads within
the block to communicate through on-chip shared memory. A single multiprocessor
can execute multiple blocks simultaneously, up to a maximum of 16 resident blocks
per multiprocessor on Kepler devices, and 32 resident blocks on Maxwell devices
[86, 87]. Of course, if n blocks execute on a single multiprocessor, then both the
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shared memory capacity and registers available to each block are reduced by a
factor of n.

2.3.3 Thread Warps

CUDA kernels use an execution model called SIMT (Single Instruction, Multiple
Thread) that allows threads to execute independent and divergent instruction
streams [87]. SIMT groups threads into units called warps; sets of 32 adjacent
threads which execute concurrently using a shared instruction cache in a SIMD
configuration. This correlates closely to GPU hardware, as CUDA cores on a con-
temporary multiprocessor are divided into SIMD groups, each controlled by a single
warp scheduler [42]. While the number of CUDA cores and warp schedulers varies
by generation, warp schedulers on all architectures drive at least 32 CUDA cores at
a time, typically over the course of two or more clock cycles. This has ramifications
for highly divergent code, as divergent instruction streams within a warp must be
serialised (see Section 2.8.4).

Thread warp size is independent of hardware architecture, and is consistent across
all existing Nvidia GPUs2 [87]. Thread warps are organised sequentially, such that
the first contiguous group of 32 threads in an executing kernel belong to warp 1,
while the next group belong to warp 2, and so on [87]. Warp size is an import-
ant consideration for all GPU algorithms, as any significant instruction divergence
within a warp can dramatically impair performance [86].

2.3.4 Thread Block Configurations

Thread block size can have unexpected effects on performance arising from a num-
ber of complex factors. The most significant consideration when selecting thread
block size is device occupancy. GPU devices with a compute capability of 3.0 or
greater can execute a maximum of 2048 threads per multiprocessor and 16 thread
blocks per multiprocessor [87]. In addition, a multi-processor can only execute as
many threads as local resources (such as shared memory and registers) allow.

The effect of thread block size on kernel execution is typically not this straight for-
ward, and it is rarely immediately evident what configurations will perform the

2Warps are referred to wavefronts and contain 64 threads on AMD hardware [1].
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most efficiently. For instance, and rather counter-intuitively, even limiting multi-
processor occupancy (by using blocks of 64 threads) can have net positive perform-
ance impact in memory-bound kernels [86]. This can most easily be explained as
the result of a memory access pattern that is overutilising global memory band-
width with two many non-contiguous uncoalesced requests (although this may not
be the only possible explanation in all instances). Reducing occupancy reduces the
load on the global memory bandwidth, and allows more values to be retrieved or
stored per transaction. Test configurations where kernels with only 50% occupancy
significantly outperform those with 100% occupancy provide a good indication that
memory access is inefficient (see Figure 2.2 for an example).

2.3.5 Preparing and Launching Kernels

Kernels are launched by a host thread after device side memory has been allocated
and input data has been copied to the device. This may be done through either
blocking or asynchronous API calls. The kernel launch is always asynchronous, and
uses a syntax similar to a standard method, extended to allow configuration of grid
and block sizes. Kernels may optionally specify shared memory capacity per block,
as well as execution stream number (see sections 2.6.3 and 2.8.2 respectively). The
syntax is as follows:

1 kernelName <<< gridSize, blockSize [, sharedMemoryPerBlock] [,

executionStream] >>> ( kernel_args ... );

A simple host function that uses the example kernel from Listing 1 to raise all
values in an array to a specified power is provided in Listing 2. This function il-
lustrates how device memory is allocated and filled, how a kernel is launched, and
how results are returned back to the host. Note that the function uses blocking
API calls to allocate memory and transfer data, which eliminates the need to syn-
chronise the kernel before reading outputs from the device.

2.4 Kepler Multiprocessor

The application developed as a product of this research is designed for Nvidia GTX
700 series Kepler GPUs or later (see Section 1.3.1), in order to take advantage of
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Listing 2 Example host program that manages the execution of the example ker-
nel shown in listing 1.

1 #include "cuda_runtime.h"
2 ...
3 void hostFunction(int* array, int array_size, int power, int block_size)
4 {
5 int* dev_in, dev_out; //declare device pointers
6
7 //allocate device memory
8 cudaMalloc((void **) &dev_in, array_size * sizeof(int));
9 cudaMalloc((void **) &dev_out, array_size * sizeof(int));

10
11 //copy input data to device array
12 cudaMemcpy(dev_in, array, array_size * sizeof(int),

cudaMemcpyHostToDevice);
13
14 //calculate grid size and launch kernel
15 int grid_size = array_size / block_size;
16 ExampleKernel<<<grid_size, block_size>>>(dev_in, dev_out, power);
17
18 //copy results back into array
19 cudaMemcpy(array, dev_out, array_size * sizeof(int),

cudaMemcpyDeviceToHost);
20 }

register shuffle operations and the read-only memory cache. These functions are
used to accelerate access to protocol header data at arbitrary offsets in device global
memory, arguably the most significant potential bottleneck in the classification
kernel. This section provides a brief overview of the Kepler multiprocessor and its
on-chip resources. The remaining sections in this chapter assume Kepler micro-
architecture unless otherwise specified.

The Kepler Streaming Multiprocessor (SMX) contains 192 CUDA cores that are
controlled by four independent warp schedulers. Warp schedulers are responsible
for 48 cores each [87], and emit two independent instructions at a time to these
cores. Of these cores, 32 are used to process the warps threads, while 16 are used
for ILP (Instruction Level Parallelism) [81]. ILP allows mutually exclusive (or
independent) operations to execute simultaneously, thereby improving kernel per-
formance [86, 125].

In addition to abundant off-chip device memory, each multiprocessor has access to
[87]:

• 64KB of low latency on-chip storage for shared memory and L1 caching.
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• 65,536 fast 32-bit registers stored in an on-chip register file.

• 64KB of low latency constant memory which is readable by all multi-processors,
but can only be written to by the host thread.

• 48KB read-only data cache for texture, surface and Read-Only memory.

• 32 SFUs (Special Function Units) for single-precision floating-point transcend-
ental functions.

Multiprocessor architecture is not consistent across micro-architectures or device
generations. For instance, Maxwell streaming multiprocessors (SM) contain only
128 CUDA cores, while second generation Maxwell devices support up to 96 KB of
shared memory [83, 87].

2.5 Global Memory

Global memory is by far the most abundant memory region on CUDA devices, typ-
ically providing one or more gigabytes of capacity. This capacity comes at the ex-
pense of access latency, with individual uncached requests requiring hundreds of
clock cycles to succeed [86]. This introduces a critical bottleneck in kernel execu-
tion, which can significantly impoverish the processing throughput in data intens-
ive applications. To mitigate this, multiple memory accesses may be coalesced into
fewer, larger transactions within a warp [86], greatly improving warp-level access
latency. Coalescing is not always possible, and depends heavily on the physical
layout of data in device DRAM.

2.5.1 Coalescing and Caches

Coalescing requirements were extremely strict in early Tesla devices, but have
relaxed significantly in subsequent generations due to automatic L2 caching and
other improvements [86]. In Kepler and Maxwell devices, memory requests in a
warp resulting in an L2 cache hit are coalesced into one or more 128 byte cache
lines, each mapping to a 128 byte-aligned segment in global memory [87]. If the
requests result in a cache miss, they are instead coalesced into as few 32 byte
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Figure 2.1: Coalescing global memory access for 32-bit words on CC 3.x devices.

segments as possible. This behaviour is different in earlier Fermi devices, which
used both L1 and L2 caches to accelerate global memory accesses. Figure 2.1 shows
the coalescing results of three different access patterns in Kepler devices, provided
as an illustrative example.

Kepler GPUs provide three additional approaches to accelerating access to data
contained within the device’s global memory space: through texture references and
objects, CUDA Arrays, or the recently introduced Read Only cache.

2.5.2 Texture References and Objects

The texture cache is an on-chip cache intended to accelerate texture loads from
global memory, and may additionally be used to cache integral and floating point
loads in more general CUDA programs. Prior to global caching mechanisms intro-
duced in compute capability 2.0 GPUs, coalescing requirements for global memory
loads were significantly more strict, and loading non-contiguous records would of-
ten incur a significant performance penalty when reading from uncached global
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memory. If it was not possible to coalesce reads, it was often beneficial to per-
form reads through the texture cache instead. More recent devices support surface
memory in addition to texture memory, which additionally support coherent writes
during kernel execution.

The texture cache is usually leveraged through globally declared, static texture
reference variables that are explicitly bound to a region of GPU linear memory (or
as a CUDA Array) prior to the launch of a kernel. Texture references may not
be passed as arguments, and incur some additional overhead when a kernel is in-
voked. Kepler-based devices and above additionally support texture objects, which
may be passed as standard objects into and between kernel methods. Texture ob-
jects avoid many of the limitations and much of the overhead incurred by globally
declared references [114].

All performance measures shown use texture objects, as initial testing showed they
outperformed texture references by a noticeable margin in both coalesced and un-
coalesced reads.

2.5.3 CUDA Arrays

CUDA arrays are opaque memory layouts that are optimised for texture reading
through the texture cache. CUDA arrays can have one, two or three dimensions,
with each dimension allowing a maximum of 65,536 elements [87]. While one di-
mensional CUDA arrays have limited utility due to their small capacity, two di-
mensional CUDA arrays can contain over 4 billion elements at a time, and thus
provide sufficient capacity for processing large collections of data.

2.5.4 Read-Only Cache

The read-only cache is a new cache introduced with the Kepler micro-architecture.
It uses the same cache as the texture pipeline to accelerate loads to read only data
in global memory, but does not need to bind the data to a texture object or refer-
ence, and lacks the size limitations of traditional textures [81, 87]. The read-only
cache may only be used explicitly on compute capability 3.5 devices or higher, us-
ing the __ldg() function. The read-only cache is available on compute capability
3.0 devices, but cannot be explicitly forced; it is used if the compiler determines a
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Figure 2.2: Measured read performance by access type, cache memory and thread
block size.

particular memory load accesses constant data, which can be hinted at by applying
the __restrict and const modifiers on relevant memory pointers.

2.5.5 Performance Comparison

This section compares the performance results of each of the above mentioned
global memory access approaches when utilised to read 128 bytes of fully coalesced
and fully uncoalesced synthetic data, using 16 bytes of register memory as a rolling
cache. These memory layouts represent the performance extremes of ideal case and
worst case respectively, and thus give a decent approximation of the performance
range of each type. The performance of coalesced and uncoalesced memory access,
collected by the researcher using Nvidia Nsight 4.2 [85], are summarised in Figure
2.2. These results show the effective throughput achieved when summing sets of 32
integers (or 128 bytes) per thread, using coalesced and uncoalesced read patterns.

This figure shows that while L2 caching significantly outperforms all other meth-
ods when reading fully coalesced data, it performs least efficiently when accessing
fully uncoalesced data. In contrast, the performance of 2D CUDA arrays vary the
least overall, providing the best uncoalesced performance and the worst coalesced
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read performance. Of the remaining three, read-only memory consistently outper-
formed texture objects, which in turn out performed texture references (not shown).
These results will be revisited in Section 2.8.3 to explain why block sizes of 64
threads typically perform far better than other block configurations when memory
access is not coalesced, and how this can be an indicator of bandwidth saturation.

2.6 Other Memory Regions

CUDA GPUs provide additional memory regions which support higher through-
puts and lower latency than global memory, at the expense of highly limited stor-
age capacity. Effective management and application of these limited memory re-
sources is critical to achieving high execution efficiency, as they reduce dependence
on slow global memory. These regions include register memory, constant memory
and shared memory.

2.6.1 Registers

Registers are contained within a register file on each multiprocessor [87], and
provide fast thread-local storage during kernel execution. Kepler and Maxwell ar-
chitectures provide 65,536 registers per file, which are evenly divided between all
active thread blocks executing on the multiprocessor [87]. Registers are typically
accessed with zero added clock cycle overhead if register operations do not cause
register bank conflicts, read-after-write dependencies issues, or register spills res-
ulting from high register pressure [86].

Bank conflicts cause increased latency and cannot be directly avoided, as executing
threads have no direct control over register allocation. The chances of avoiding
bank conflicts can be improved, however, by ensuring that the thread block size
is a multiple of 64 [86]. Read-after-write dependencies occur if a thread tries to
access the value stored in a register within 24 clock-cycles of it being written (the
register’s update latency). Read-after-write dependencies increase register access
latency, but can be partially or completely hidden if the warp scheduler can context
switch between other warps in the block while waiting for the register update to
complete [86].
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Register spilling refers to the transparent use of high-latency local memory to sup-
plement register storage. Under certain circumstances, a local variable may be
stored in an automatic variable in global memory rather than in the register file.
This occurs when the Nvidia CUDA compiler determines that there is insufficient
register space to contain the variable, which may occur to save register space when
storing a large array or data structure, or if the register file is fully exhausted [86].
While automatic variables are considered local memory, they are stored off-chip in
device DRAM and thus incur the same access penalties as global memory. Kepler
GPUs use the L1 cache exclusively for accelerating local memory accesses, and
may substitute unused shared memory capacity for an increased L1 cache size to
improve local memory performance [87].

2.6.2 Constant Memory

Constant memory is a small read-only region of globally accessible memory which
resides in device DRAM [87]. In contrast to global memory, constant memory
has only 64KB of storage capacity, but benefits from an 8KB on-chip cache which
greatly reduces access latency [86]. While a cache-miss is as costly as a global
memory read, a cache-hit reduces access time to that of a local register, costing no
additional clock cycles at all as long as all active threads access the same memory
index [86]. If active threads in a warp access different constant memory indexes,
these requests are serialised, negatively impacting total performance [86]. The
limited size of constant memory unfortunately prohibits its utilisation as a me-
dium for storing large data collections such as packet sets, but it is well suited to
storing device pointers, program directives, constant data structures and run-time
constant variables.

2.6.3 Shared Memory

Shared memory is a multiprocessor local memory region that facilitates coopera-
tion between multiple threads in an executing thread block [87]. Kepler devices
provide a total of 64 KB of shared memory per multiprocessor and support three
shared memory configurations: 16 KB, 32 KB and 48 KB [87]. The remainder
of shared memory on Kepler multiprocessors is used for L1 caching. Maxwell
devices do not use L1 caching; instead, the L2 cache stores both local and global
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accesses, allowing the full capacity of shared memory to be used by executing ker-
nels. Shared memory is divided evenly between all blocks executing on a particular
multiprocessor, and as such is a limited resource [86].

Shared memory performance can be adversely affected by bank conflicts. These
can occur if two threads in a warp access different 64-bit words from the same
shared memory bank, and ultimately results in serialised access to the bank [86].
Kepler’s shared memory is partitioned into 32 separate banks (each supplying 64
bits of bandwidth), organised such that successive 32-bit (or 64-bit) words map to
successive banks. If multiple threads in a warp read values stored in the same 64-
bit word, that 64-bit word is broadcast, avoiding serialisation. If multiple threads
write to the same shared memory location, the write is only performed by one of
the threads.

Shared memory was, with the exception of warp voting (see Section 2.7.1), the
only facilitator of fast on-chip communication between threads in Tesla and Fermi
devices, and the only method besides global memory to transfer integral and float-
ing point values between threads in a block [87]. Kepler supports a faster mech-
anism, warp shuffling, that provides a more direct and efficient means of passing
values between threads if they are contained within the same warp (see Section
2.7.2).

2.7 Inter-warp Communication

In addition to shared memory, which provides a shared memory space for threads
executing in a single block, Kepler micro-architecture provides two mechanisms for
inter-thread communication at the warp level. These include warp voting, which
communicates predicate results between warp threads, and warp shuffling, which
passes integral and floating point values. Warp voting and warp shuffling are im-
plicitly synchronised, as threads in a warp cannot diverge.

2.7.1 Warp Vote Functions

Kepler provides three warp voting functions: __all(), __any() and __ballot().
The __all()and __any() functions were introduced with CC 1.2 devices, while
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the __ballot() function was added to Fermi architecture. All functions take a
32-bit integer as input from each thread in the warp; from the perspective of these
functions, zero values are taken as false while non-zero values are considered true.

The __all() function performs a logical conjunction between all integer inputs,
producing a non-zero value if the resultant proposition is true, and a zero value if
it is false. Similarly, the __any() function returns the result of a logical disjunc-
tion of input truth values. The __ballot() function, in contrast, provides more
detailed results by returning the value supplied by each thread in the warp as a
single bit in a 32-bit integer, thereby allowing any thread to review the results of
any other thread in the warp.

2.7.2 Warp Shuffle Functions

Warp shuffle functions, introduced in Kepler micro-architecture, provide a low-
latency alternative to shared memory for exchanging integral and floating-point
values between threads (referred to as lanes) in a thread warp. Kepler includes
four distinct source-lane addressing modes: __shfl(), __shfl_up(),
__shfl_down(), and __shfl_xor(). Shuffle functions take only a single clock-
cycle to service an entire warp [87], provide more direct transfers than shared
memory, and consume no shared memory capacity. In addition, they provide a safe
and future-proof means of synchronising threads, previously only achievable with
expensive block-level synchronisation using __syncthreads() intrinsic function
[81].

All shuffle functions take a value v to be transmitted and a width w (where w is
a power of two and no greater than the warp size) as arguments, as well as one
other argument that is specific to each addressing mode. Setting a width w < 32

creates 32
w

distinct sub-grouping of w contiguous threads, where each sub-grouping
is restricted to communications with other threads in its sub-group. Width is an
optional argument, and defaults to 32 if omitted.

The basic shuffle function __shfl() takes an integral source lane (or thread) value
as its third argument. When the __shfl() function is performed by a warp, each
thread receives the value v contained in the thread specified by the source lane
value. The __shfl_up() and __shfl_down() functions operate similarly, but
take a delta argument rather than a source lane. These functions, respectively,
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Figure 2.3: Summing eight elements with a butterfly reduction.

shuffle thread-specific v values up and down by delta lanes. Values shuffled out
of the range of the thread warp (or subgroup) are ignored, while threads receiving
shuffled registers from threads located outside the warp or subgroup simply receive
their own value for v.

The final shuffle function, __shfl_xor(), takes a bitwise lane mask as a third
argument, which is combined using a bitwise exclusive OR with the thread’s lane
ID to produce the source lane from which to copy v. The primary purpose of the
__shfl_xor() function is to facilitate efficient parallel butterfly reduction using
shared memory, which can be used to sum, multiply or otherwise combine register
values across a warp [87]. Figure 2.3 outlines the basic concept behind butterfly
reduction when shuffling a subgroup with a width of eight.

In the first iteration of the butterfly reduction, the warp (or group) containing 2n

elements is conceptually divided in two and summed together, leaving two identical
sets of 2n−1 elements. These sets are then subdivided again and summed, each
producing two identical sets of 2n−2 elements. This process continues recursively
until the single set of 2n elements is transformed into 2n copies of a single element.

The __shfl_xor() function achieves butterfly reduction through a sequence of
lane masks that effectively replicate this process. Each lane mask has only a single
bit set so that when the lane mask is applied to the lane ID, the matching bit in the
lane ID is effectively flipped. Inverting the nth bit of a positive integer results in
either (a) subtracting 2n from the value if the bit was initially set, or (b) adding 2n
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Listing 3 Sum via butterfly reduction for a full warp using __shfl_xor().

1 int sum = values[blockDim.x * blockIdx.x + threadIdx.x];
2
3 sum += __shfl_xor(sum, 16); //0x10000
4 sum += __shfl_xor(sum, 8); //0x01000
5 sum += __shfl_xor(sum, 4); //0x00100
6 sum += __shfl_xor(sum, 2); //0x00010
7 sum += __shfl_xor(sum, 1); //0x00001
8
9 int result = sum;

to the value if the bit was initially cleared. Using the example in Figure 2.3, which
comprises eight (23) lanes, the first pass applies a lane mask of 0x100 (22) which
sums elements four indexes apart. The second pass applies a lane mask of 0x10 (21)
to the four resultant (and replicated) elements, summing elements two elements
apart. After the third iteration of this procedure, every participating thread con-
tains a copy of the final sum. The number of iterations scales logarithmically with
respect to the number of lanes, so reducing a full warp of 32 threads requires only
five passes. Listing 3 shows example CUDA code for summing across a full warp
of threads using the __shfl_xor() function.

2.8 Performance Considerations

CUDA Kernels are highly sensitive to a wide array of factors which negatively
impact efficiency. This section focuses on factors relevant to this research, and
indicates how they may be avoided or capitalised upon.

2.8.1 Transferring Data

Memory transfer speed is limited by the bandwidth of the PCIe bus, which provides
a total of either sixteen (PCIe 2) or thirty-two (PCIe 3) 1GBps channels. These are
divided evenly between dedicated upstream and dedicated downstream channels,
allowing for a maximum of 8GBps or 16GBps transfer in each direction respectively
[86]. In comparison, the Kepler-based GTX Titan provides 288.4 GB/s bandwidth
between device memory and device multiprocessors [80], over 17x more than the
PCIe 3 bus. This vast difference in performance can result in a critical bottleneck
if the device depends on and / or produces large quantities of data.
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CUDA provides several mechanisms to mitigate the impact of memory transfers
for applications which rely on large volumes of data, at the expense of host side
memory resources. While host memory is typically allocated as pageable and may
be cycled to disk to free up host memory, optimised transfers require page-locked
memory allocations which must remain in host memory. Page-locked memory
provides significantly higher bandwidth than pageable memory, and facilitates a
number of additional optimizations, such as asynchronous concurrent execution,
and write-combining memory. Excessive use of page-locked memory is not encour-
aged, however, as it is a scarce system resource; overuse can negatively impact host
performance and application stability [86].

The data transfer rate to the device may be improved further by allocating page-
locked memory as write-combining memory [86]. Page-locked memory is typic-
ally allocated such that it is cacheable by the CPU, which consumes system cache
resources to accelerate host side access to the data. Memory allocated as write-
combining is by contrast not cacheable, which frees L1 and L2 resources for use by
other parts of the application. In addition, it prevents data snooping by the PCIe
bus, which can improve transfers by up to 40% [86]. This comes at the expense
of host-side read performance, which suffers due to the lack of caching. Write-
combining memory is thus well suited for transfers to the device, as it is unlikely
that the host would need to read this data after it has been written. It is less useful
when transferring data from the device, as it is much more likely this data will be
read by the CPU, either within subsequent calculations, or when being copied from
host memory to a file.

Page-locked memory also supports mapped memory. Mapped memory eliminates
the need for explicit memory copies between the host and device by allowing ker-
nels to access host memory directly, typically through the PCIe bus [86]. Mapped
memory is particularly useful on integrated GPUs which use the same physical
memory as the host system, as mapped memory can be accessed directly rather
than through the PCIe bus.

2.8.2 Streams and Concurrency

CUDA allows for both synchronous and asynchronous copies between host and
device memory. Memory copies between host and device memory block until com-
pletion when transferred synchronously, but return control immediately after
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Figure 2.4: Synchronous execution versus asynchronous execution.

scheduling the copy transaction when performed asynchronously [87]. Asynchron-
ous copies can be capitalised on to perform additional host side processing during
the copy period, allowing kernels to be scheduled for execution prior to transfer
completion. As contemporary CUDA devices support concurrent copy and com-
pute, which allows kernel execution to overlap with data transfers, it is possible to
begin executing a kernel on a subset of input data prior to the completion of the
entire transfer process [86, 87].

CUDA applications facilitate concurrency by partitioning input data into separate
and independent instruction streams. By default, CUDA schedules all events (in-
cluding memory transfers and kernel calls) in the default stream, which process
these events in series. In this configuration, memory transfers must fully complete
before kernel execution can begin, as there exists no other context in which the
kernel can execute. Creating additional asynchronous streams that each trans-
fer and process a subset of data solves this, making concurrent copy and compute
possible. These streams behave similarly to the default stream, with one signific-
ant exception: operations performed in the default stream are always scheduled in
all streams, while operations performed in other streams are only visible within
their specific stream. Each stream transfers a subset of data and then executes
the kernel with stream specific input parameters [86], and can be scheduled such
that while one stream is executing a kernel, another is transferring data. This can
improve overall device utilisation and significantly reduce the time necessary to
evaluate a kernel. Concurrent copy and compute is illustrated in Figure 2.4.
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2.8.3 Occupancy

Multiprocessor occupancy is a measure of GPU resource utilisation; it is the ratio
of active warps on the multiprocessor to the maximum number of possible active
warps. When occupancy is high, the multiprocessor is able to context switch to
ready warps to hide the access latency in the executing warp. If occupancy is too
low, the multiprocessor is not able context switch to other warps and must remain
idle until the operation completes or the resource returns. Occupancy is affected by
the thread block size, in combination with register allocation and shared memory
utilisation.

While multiple thread blocks may execute concurrently on a single multiprocessor,
multiple multiprocessors cannot divide a single thread block between them. This
derives from the requirement that on-chip shared memory be accessible to all
threads executing in the current block, which would not be possible if a block’s
shared data was distributed between multiple multiprocessors. With respect to
Kepler architecture, if the requested thread block size is not a factor 2048 (the
maximum supported thread count per multiprocessor of this compute capability),
then a proportion of the multiprocessor’s processing resources must be left idle.
Kepler supports block sizes that are a multiple of the warp size, from 32 threads
(1 warp) up to a maximum of 1024 threads (64 warps). Kepler multiprocessors
are limited to a maximum of 16 active blocks at a time however, and thus block
sizes below 128 threads also result in lost occupancy, regardless of other factors.
By comparison, Maxwell supports 32 active blocks per multiprocessor, and thus
can process block sizes as low as 64 threads without losing occupancy. Figure 2.5
expresses this diagrammatically.

Block size is not the only kernel attribute which impacts occupancy, with shared
memory and register utilisation being of similar importance. Each multiprocessor
contains a finite amount of on-chip shared memory and register storage, which
must be shared between all active blocks running on the multiprocessor. Kepler
multiprocessors support up to 48KB of shared memory and 65,536 registers on
each multiprocessor. If each block in a hypothetical kernel utilised 16KB of shared
memory, only three blocks could be active at once regardless of block cardinality.
Similarly, if each block utilised 16,384 registers, then only four blocks could be
active on each multiprocessor. To achieve full occupancy, with all 64 warps active,
each thread must consume at most 32 registers and 24 bytes of shared memory.
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Figure 2.5: Affect of thread block sizes on Kepler multiprocessor occupancy.

While maintaining high occupancy is highly advisable, it must be balanced with
memory bandwidth and other factors to ensure the best possible performance.
This is illustrated by Figure 2.2 (provided in Section 2.5.5) which shows that when
device memory access is not coalesced, blocks with a cardinality of 64 (which result
in only 50% occupancy) consistently outperform their full occupancy counterparts
by a significant margin. This is a symptom of device memory bandwidth over-
saturation. Specifically, the thread block containing 64 threads requires half as
much bandwidth to service all executing warps. This reduces contention for device
memory resources and bandwidth congestion, resulting in better performance.

2.8.4 Instruction Throughput

GPU performance is sensitive to control flow instructions (if, switch, for, do,
while) and certain arithmetic functions (division and modulus), and can be signi-
ficantly impeded if these instructions are used excessively or inefficiently.

Decision based operations (if, switch) work efficiently when all threads in a warp
agree on the branch condition, but may cause severe divergence and serialisation if
threads follow a wide variety of distinct and non-trivial branches [86, 125]. When
this happens, each divergent path is processed sequentially while threads following
other paths remain inactive. As a result, substantial divergence between threads
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can significantly impair GPGPU parallel processing performance [86]. When de-
cisions which may potentially cause divergence are unavoidable, branches should
be as short and infrequent as possible to minimise serialisation overhead and in-
crease the possibility that they will be replaced with branch prediction predicates
by the CUDA compiler [87].

Control flow functions that facilitate iteration are similarly expensive on GPUs
due to branching and control overhead. Where possible, it is often desirable to
fully or partially unroll loops to eliminate this unnecessary overhead and improve
efficiency. Unrolling may be performed automatically by the compiler (if possible)
or manually by the kernel designer. While often effective, unrolling loops is not
guaranteed to improve efficiency as it often trades control logic for higher register
utilisation, increasing register pressure (see Section 2.6.1) [87].

Finally, integer division and modulo operations are significantly more expensive
to compute than other arithmetic functions [86], but can be replaced by far more
efficient bit-shift and bitwise operations if the divisor or modulus is a power of two.
Specifically, if k = 2n where n ≥ 1, then x/k is equivalent to x � log2k, and x% k is
equivalent to x&(k − 1) [86].

2.8.5 Device Memory Allocation

A final performance consideration is how device memory is allocated. The CUDA
6 API supports dynamic memory allocation from within a kernel, allowing in-
dividual threads to allocate and deallocate their own memory containers within
global memory at runtime, providing an alternative to pre-allocation of device buf-
fers on the host [87]. Dynamic allocation is expensive however, and can quickly
cripple the performance of a kernel if not used sparingly. Dynamic memory is thus
most useful in combination with dynamic parallelism, a feature which allows ex-
ecuting kernels to launch additional kernels and thereby create more work for the
GPU without dependence on the host process [87]. Dynamic memory allocation and
kernel execution are not within the scope of this research, but could be considered
and incorporated at a later stage.
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2.9 Summary

This chapter discussed GPGPU domain, Nvidia GPU micro-architectures and the
Nvidia CUDA API, focussing specifically on the features of Kepler and Maxwell
micro-architectures used during the course of this research. The GPGPU domain
was introduced in Section 2.1, which summarised the history of GPUs and the
GPGPU paradigm, introduced the CUDA API, and listed some of the benefits and
drawbacks associated with the domain.

Section 2.2 provided a brief summary of CUDA micro-architectures, from the Tesla
micro-architecture originally introduced in late 2006, to the as-yet unreleased Pas-
cal micro-architecture expected to arrive in 2016. This section highlighted the
major changes that occurred between early and contemporary micro-architectures,
and explored three significant new features (3D memory, NVLink, and fast uni-
fied memory) included in Pascal micro-architecture. Collectively these features
are expected to improve device memory throughput, accelerate host-device commu-
nication, and eliminate the need to stage explicit copies between host and device
memory.

Section 2.3 explored the CUDA programming model. The section introduced the
concept of kernels and device side functions, and explained how threads are or-
ganised into grids, thread blocks and warps to express parallelism. The section
concluded with an overview of how kernels are launched from a host thread.

Section 2.4 introduced Kepler micro-architecture, and provided an overview of the
Kepler SMX multiprocessor.

Section 2.5 addressed the bottleneck presented by global memory, and introduced
both coalescing and the various caching mechanisms available to improve device
memory throughput.

Section 2.6 described the on-chip memory shared, constant and register memory
regions, which provide fast, low-latency storage but limited capacity.

Section 2.7 described two alternative mechanisms for fast inter-warp communica-
tion: warp voting and register shuffling. Warp vote functions allow threads in a
warp to communicate and make decisions based on their collective states, while
register shuffle operations allow threads to pass registers directly and efficiently
to other threads in a warp.
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Section 2.8 concluded the chapter by elaborating on several performance considera-
tions which can heavily impact achievable performance. This section first described
current mechanisms for accelerating transfers between the host and device, and
how transfers and computation can be overlapped through asynchronous and con-
current execution. The section also discussed device occupancy and its relationship
to achievable performance, and briefly summarised more efficient workarounds for
inefficient division and modulo operations.

The following chapter addresses background relevant to the networking component
of the performed research, in preparation for a more detailed discussion of packet
classifiers in Chapter 4.



3
Packets and Captures

THIS chapter introduces background information on network packets, pro-
tocols, captures and capture processing. These topics are foundational to
the performed research, and provide context for the discussion of packet

classification in Chapter 4. The following summarises the sections in this chapter:

• Section 3.1 provides a brief high-level introduction to packets and protocol
headers.

• Section 3.2 introduces the TCP/IP (Transmission Control Protocol/Internet
Protocol) model for network communication, and describes how the model is
used in the transmission of payloads across networks.

• Section 3.3 introduces packet captures, particularly focussing on the struc-
ture and limitations of the pcap capture format typically used to store net-
work traces. These files form the input medium for the classification system
discussed in Part III, and are thus important to understand.

48
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• Section 3.4 discusses the PcapNg (Pcap Next Generation) capture format
which aims to address the limitations of the original pcap format. This sec-
tion is included primarily for the sake of completeness, as the PcapNg format
is currently a work in progress and is not yet fully supported by capture pro-
cessing applications [132].

• Section 3.5 discusses the pcap APIs (Libpcap and WinPcap) which facilitate
the creation, filtering and parsing of capture files on *nix and Windows sys-
tems respectively. The section discusses the history of these APIs and how
they are used to interface with capture files.

• Section 3.6 provides an overview of the capture analysis functionality of the
protocol analyser Wireshark, and discusses its performance with respect to
large capture analysis.

• Section 3.7 concludes the chapter with a summary.

3.1 Packets

Digital communication networks connect local and/or geographically distributed
hosts, which interact with one another via discreet message frames called packets.
Packets encapsulate a context (or application) specific payload – an HTTP (Hyper-
Text Transport Protocol) [24] web page, DNS (Domain Name System) [60] query or
ARP (Address Resolution Protocol) [97] request, for example – within one or more
protocol headers. These headers are used to guide the transmission of the packet
within and across network boundaries. Packets are relatively short segments of
binary data and can be recorded with relative ease, making it possible to capture
all dynamic communication to and from a host (or network) over an particular
time delta into a static file – known as a capture or trace file – for detailed and
repeatable analysis.

3.1.1 Protocol headers

A packet comprises a set of ordered, application-specific transmission directives
called protocol headers, followed by a segment of application-specific transmission
data [112]. Each successive protocol header is contained within the payload section
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of the previous protocol header [112], with most packets comprising at least four
distinct protocol layers.

Within the context of modern networking, a protocol is an established set of rules
and specifications for communicating and receiving information associated with
a particular function, application or service. Networks utilise a wide variety of
system and application level protocols of varying complexity to service network
transactions, each tailored for a specific purpose. Common protocols include the
Ethernet protocol, the Internet Protocol (IP) [101], the Internet Protocol Version 6
(IPv6) [105], the Transmission Control Protocol (TCP) [102], the Internet Control
Message Protocol (ICMP) [98], the User Datagram Protocol (UDP) [100], the File
Transfer Protocol (FTP) [99], among many others.

Conceptually, packet headers can be thought of as a hierarchy or stack. Each level
in the stack is associated with a different type of service, and the stack is organised
such that each layer receives services from the layer directly below it and provides
services to the layer directly above it [112]. The TCP/IP model, for instance, is
represented as four broad layers [13], whereas the Open Systems Interconnection
(OSI) model [59] is divided into seven layers. These models are discussed in the
following section.

3.1.2 Packet Size and Fragmentation

The volume of data contained in a particular packet depends on the purpose of the
packet, and may vary greatly from simple host name resolution requests to large
segments of multimedia data. As a result, packet lengths may vary significantly,
ranging from tens to thousands of bytes. Packet sizes are ultimately limited by
the transportation mediums Maximum Transmission Unit (MTU) that prescribes
the maximum size a particular packet type may be [61, 101]. For example, the
Ethernet II protocol specifies an MTU of 1500 bytes, while the FDDI (Fiber Dis-
tributed Data Interface) protocol specifies an MTU of 4352 bytes [61]. Protocols
such as IP [101] allow payloads which exceed the MTU to be divided over multiple
packets, termed fragments. Fragments may be reconstituted into a single payload
by the receiving host on arrival, achieved through inspection of fragment-related
information contained within each protocol header [112].
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Figure 3.1: TCP/IP decomposed into its abstract layers.

3.2 The TCP/IP Model

TCP/IP, also known as the Internet Protocol Suite [13, 112], is a network commu-
nication model which organises protocols based on the services they provide. The
TCP/IP model is leveraged in the transmission of the majority of contemporary
network traffic and has been pivotal to the success of the Internet. Although not
an explicit design choice, TCP/IP may be viewed as a four layer stack consisting of
the Link Layer, Internet Layer, Transport Layer and Application Layer [13, 112].
A high-level overview of the structure of a TCP/IP packet mapped onto these four
layers is provided in Figure 3.1.

The majority of this section briefly describes each layer of the TCP/IP stack in
greater detail, establishing their roles in facilitating payload transmission. The
section concludes by briefly discussing the OSI model, an alternative communica-
tion model which employs seven layers instead of four [59]. This model is described
through comparison to the TCP/IP model in order to highlight their similarities and
differences.

3.2.1 Link Layer

The link layer is responsible for preparing packets for dispatch and for the physical
transmission of packets to a remote host or the next-hop router [13]. This layer is
only responsible for delivering a packet to the next router or host in the chain, and
it is up to the receiving interface to direct the packet on to a router or host closer
to the transmission end-point. This process is repeated by each node in the chain,
until such time as the packet arrives at its destination. To achieve this, a frame
header is added to the packet, containing information relevant to the delivery of the
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packet to the target host or the next-hop router over the specified network medium.
This header is updated by each node in the path as the packet is transmitted to
its destination. The Link Layer is associated with protocols which support this
physical transmission, such as Ethernet II or WiFi (802.11 a/b/g/n etc.) [13].

3.2.2 Internet Layer

The Internet layer, located directly above the Link Layer in the TCP/IP stack,
is responsible for the delivery of packets between end-points in a transmission
[13, 112]. The Internet Layer’s functionality is contained within an IP or IPv6
protocol header [101, 105]; facilitating logical, hierarchical end-point addressing
through IP addresses, and enabling packet routing by specifying the terminal node
in the transmission. The Link Layer uses the address information encapsulated
in IP, in conjunction with routing tables, to derive the physical address of the next
network interface between the sending and receiving host. In this way, the Link
Layer provides a service to the Internet Layer by determining the delivery route a
packet navigates to arrive at its remote destination, and transmitting it along that
route. IP has two widely used implementations, namely IP version 4 (IPv4), which
supports just over four billion 32-bit addresses [101], and IP version 6 (IPv6), which
uses 128-bit addresses that provide roughly 3.4× 1038 unique address values [105].

3.2.3 Transport Layer

The transport layer is entirely independent of the underlying network [13, 112],
and is responsible for ensuring that packets are delivered to the correct application
through service ports. Transport layer protocols in the TCP/IP suite include TCP
and UDP [13, 100, 102].

TCP is a connection-orientated protocol that addresses transmission reliability
concerns [102, 112]. It includes functionality to:

1. Discard duplicate packets.

2. Ensure lost or dropped packets are resent.

3. Ensure packet sequence is maintained.
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Figure 3.2: Stack level traversal when transmitting a packet to a remote host using
the TCP/IP model.

4. Check for correctness and corruption through a 16 bit check-sum.

In contrast, UDP is a connectionless protocol which provides only best-effort de-
livery and weak error checking [100]. Unlike TCP, UDP sacrifices reliability for
efficiency, making it ideal for applications such as DNS look-ups, where the over-
head necessary for maintaining a connection is disproportionate to the task itself
[112].

Both TCP and UDP define two 16-bit service ports, namely Source Port and Des-
tination Port, which are used to determine which application a particular packet
should be delivered to. As has been noted, both TCP and UDP are network ag-
nostic, and leave network related functionality to lower layers in the protocol stack
[100, 102].

3.2.4 Application Layer

The top-most layer in the TCP/IP stack is the application layer, which simply en-
capsulates the data to be delivered to the waiting application. This data may itself
contain further application specific headers, which are handled by the receiving
process. The packet is terminated by the frame footer, associated with the link
layer, which delimits the packet and provides error checking functionality.
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Application payloads dispatched to remote hosts conceptually descend the TCP/IP
stack, which applies relevant headers to the payload at each level [13]. Figure 3.2
illustrates this process for a payload transmitted from a sending host to a distant
receiving host via two routers.

The application layer header is applied to the data payload first, followed by the
transport layer header, Internet layer header, and finally link layer header. Once
all headers have been applied, the packet is transmitted to the next-hop router,
Router A. Router A receives the packet and, using information contained in the
Internet layer header and routing tables, determines the shortest path to the re-
ceiving host. It then re-sends the packet with a new link layer header, destined
for Router B. Router B repeats this process, delivering the packet to the Receiving
Host. The payload is then extracted and delivered to the waiting application by
ascending the stack, removing headers at each layer.

3.2.5 The OSI Model

The OSI model, a product of the International Organisation for Standardisation, is
a seven layer standard model for network communication that provides an altern-
ative to TCP/IP.

Layering in the OSI model is both explicit and an integral part of the model’s
design, with each abstract layer tasked with providing specific services [59]. As a
result, the OSI model can be generally applied to the design of arbitrary protocols.
This differs from the TCP/IP model, where layers map to specific protocol groups
in the TCP/IP suite. In practice, the OSI model’s seven explicit layers are function-
ally quite similar to the four general layers in the TCP/IP model, and provide the
same basic services. Due to this inherent similarity, it is possible to outline the OSI
model in terms of the TCP/IP model.

The seven layers defined by the OSI model, from lowest to highest, are the Phys-
ical Layer, Data-Link Layer, Network Layer, Transport Layer, Session Layer and
Application Layer [59]. The physical and data-link layers in the OSI model are
essentially encapsulated by the link layer of the TCP/IP stack, breaking it down
into two distinct processes; physical transmission and packet framing. The OSI
network layer is roughly equivalent to the Internet layer of the TCP/IP model, al-
though there is some overlap with the TCP/IP link layer. Similarly, the OSI trans-
port layer, and a small subset of the session layer, are contained within the TCP/IP
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Figure 3.3: Layer comparison between the OSI and TCP/IP models.

transport layer. The remainder of the OSI session layer, as well as the presenta-
tion and application layers, are encapsulated by the TCP/IP application layer. An
illustration of this breakdown is provided in Figure 3.3.

While not as prevalent as the TCP/IP model, the OSI model is widely used outside
of the TCP/IP suite. In particular, the OSI model provides the foundation for the
IEEE 802 standards for local and metropolitan networks, including IEEE 802.3
Ethernet and 802.11 Wireless LAN (Local Area Network) protocols.

As the scope of this research is restricted to protocols in the IP suite, future dis-
cussion refers specifically to the TCP/IP model. Due to their similarities however,
discussion referring to the TCP/IP model applies generally to the OSI model as
well.

3.3 Pcap Capture Format

Packet captures, or traces, are a static record of otherwise transient packet data
that are typically captured at a specific network interface. They may span from a
few seconds to several years of collected traffic, and can range in size from a few
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kilobytes to hundreds of gigabytes or more depending on the capture’s composi-
tion. In general, capture size is primarily affected by three factors, which may be
generalised to the following:

1. Average packet size, in bytes.

2. Average packet arrival rate, in packets per second.

3. Capture period, in seconds.

The size of a capture is determined by the product of these three metrics, which
may differ greatly from capture to capture depending on a variety of factors, in-
cluding the network interface, network environment and application context.

Packet captures come in a variety of open and proprietary formats, with the pcap
dumpfile format being the most common general and open format in use [51, 131].
Most capture types follow a similar storage model to that of pcap, encoding pack-
ets as a sequence of variable length records with static length headers. The pcap
format is still in wide use, but lacks many desirable features that limit its utility
in certain domains. For instance, it lacks the ability to store packets from mul-
tiple interfaces, store meta data, or break large collections of packets into smaller
subsections. A newer candidate format intended to address these limitations –
PcapNg – has been in development since 2004 [47], but has yet to be completely
finalised. PcapNg has recently risen in popularity due to its extended feature set,
and is currently used as the default capture format in recent builds of the Wire-
shark protocol analyser [132] (see Section 3.6), although support for the format is
only partial, and the specification still lacks many key features [132]. The PcapNg
capture format is described in Section 3.4.

The pcap dumpfile format originated as part of the Libpcap1 *nix library, and stores
packets as byte-aligned arrays which are concatenated to form an inline linked-
list, delimited by header records [51]. This configuration supports arbitrary packet
sizes without the need for padding, and allows new packets to be appended to
capture files without needing to update existing records. The pcap file structure,
illustrated in Figure 3.4, begins with a 24 byte global header detailing information
specific to the entire capture, which is followed by a list of packet records.

1http://www.tcpdump.org/

http://www.tcpdump.org/
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Table 3.1: PCAP dumpfile global header fields [51].
Header Field Byte Offset Size (bytes) Signedness

Magic Number 0 4 Unsigned
Version Major 4 2 Unsigned
Version Minor 6 2 Unsigned

This Zone 8 4 Signed
Significant Figures 12 4 Unsigned
Snapshot Length 16 4 Unsigned

Network 20 4 Unsigned

3.3.1 Global Header

The global header is a 24 byte segment at the beginning of the capture file. It
contains seven integral values that identify the format of the capture and provide
global context information to each of its records. A list of fields in the global header
is shown in Table 3.1 and summarised below.

Magic Number A constant 32-bit integer value – 0xA1B2C3D4 or 0xA1B23C4D in
hexadecimal notation for millisecond and nanosecond resolution files respect-
ively – that both identifies the file as a pcap capture and indicates the byte
order of the encoded data. If the byte order of the value is reversed when read
by an application (i.e. 0xD4C3B2A1 or 0x4D3CB2A1 respectively), it indicates
to the application that the capture is encoded using a different byte order than
the host system, and all subsequent global and record header fields must be
swapped as well [51].

Version Major/Minor Short integer values that specify the major and minor ver-
sion numbers of the file format. The current pcap file format (version 2.4) has
remained unchanged since 1998 and thus this field may typically be ignored
[51].

Figure 3.4: Structure of a pcap capture file.
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This Zone A signed integral value provided to indicate the adjustment (in seconds)
from Greenwich Mean Time (GMT) to the local time zone where the capture
was created. This field is not used in practice as timestamps are always in
GMT format [51].

Significant Figure An unsigned integer intended to indicate the accuracy of time-
stamps. The field is ignored in practice [51].

Snapshot Length An unsigned integer field (also referred to as the snap length)
that specifies the maximum amount of data (in bytes) that may can be stored
in each record body [51]. Intercepted packets that exceed this length are
cropped to this size on storage. This value is set to 65535 or greater by default
(well above typical MTU values) to ensure that all packets are captured in
their entirety [51]. Smaller values may be used to reduce storage and I/O
overhead, or as a simple data privacy measure to remove or partially erase
sensitive payloads.

Network An integer identifier that indicates the physical (or link) layer protocol
of each packet in the capture [51]. This value is included in the global header
rather than the record header as all packets are assumed to arrive at a single
interface, and thus the link layer protocol is assumed to be the same for all
packets in the capture. There are over 80 official link layer protocols defined,
as well as 15 values reserved for private use. A complete list of official link
header values may be found at [116]. This value is set to 1 for Ethernet
interfaces, and to 105 for IEEE 802.11 Wireless LAN interfaces [116].

3.3.2 Record Header

The global header is followed by an arbitrary number of individual packet records.
Each packet record contains a 16 byte record header followed by the raw packet
byte array. A list of fields in the global header is shown in Table 3.2 and summar-
ised below.

Timestamp Two 32-bit integers that indicate the arrival time of the packet as, re-
spectively, second and sub-second components [51]. The magic number in the
global header is used to determine the sub-second component, and is stored
in microseconds or nanoseconds.
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Table 3.2: Pcap dumpfile record header fields.
Header Field Byte Offset Size (bytes) Signedness

Timestamp (s) 0 4 Unsigned
Timestamp (μs/ns) 4 4 Unsigned
Included Length 8 4 Unsigned
Original Length 12 4 Unsigned

Included Length The number of bytes of packet data actually included in the
record data [51]. This value should always be less than or equal to the snap-
shot length defined in the global header. This field is of critical importance
to record navigation as the location of record n in the capture file is found by
offsetting the location of record n− 1 by IncludedLength(n− 1) + 16 bytes.

Original Length A value indicating the original size of the packet (in bytes) when
it was originally received [51]. This field may be used in conjunction with the
included length field to determine if a packet has been partially cropped.

While this record format simplifies the process of appending records to capture, it
provides no mechanism for random record access and thus requires serially parsing
the capture one record at a time for navigation. Specifically, access to the record
of the nth packet requires sequentially reading and parsing all n − 1 prior record
headers. Sequential access has little impact when processing small files, but the
process can become a time-consuming, resource intensive process when attempting
to access later records in captures spanning hundreds of millions (or billions) of
packets.

3.3.3 Format Limitations

Due in part to its structural simplicity and open nature, the pcap dump file format
has remained in widespread use without alteration for well over a decade. In par-
ticular, the format is compact, easy to parse and efficient to write. In spite of this,
it has a number of general and application-specific limitations when applied in a
modern context. The following list enumerates four of the more significant limita-
tions:

1. Serial access to records scales poorly to large captures.
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2. Captures can only store packets for a single network interface [47].

3. The format does not facilitate storage of additional types of relevant network
environment information, such as resolved host names [47].

4. There is no mechanisms to annotate captures or individual packets with ad-
ditional derived or context specific information, such as packet drop counts,
runtime metrics or comments [47].

These key limitations motivated the need for a modern alternative to the format
to address the complexity of modern network environments. This resulted in the
development of the PcapNg format, which is described separately in Section 3.4.

3.3.4 Storage Considerations

One of the most problematic aspects of accessing packet records stored in large
capture files is the bandwidth limitations of low-cost, non-volatile and high capa-
city storage such as HDDs and SSDs. For instance, typical large (TB+) 7200RPM
HDDs can typically sustain throughputs between 100 MB/s and 130 MB/s, roughly
comparable to a 1 Gbps network interface. SATA3 SSDs provide higher through-
puts of between 450 MB/s and 550 MB/s, but are significantly more expensive per
MB of storage. Applications processing captures stored on and accessed from such
hardware cannot exceed this throughput, regardless of other infrastructure.

One of the most commonly utilised approaches to mitigate the slow performance
of large disk drives is to connect multiple drives into a RAID (Redundant Array
of Independent Disks) configuration [3]. A RAID array consists of multiple drives
connected to a hardware or software based RAID controller, which interleaves (or
stripes) data and recovery information across each drive [19]. RAID arrays have
two primary benefits relating to speed and data security; they improve read and
write throughput by distributing work across multiple drives, and also provide
fault tolerance and data recovery through recovery sectors and data redundancy,
which may be used to reconstruct the data if a component drive fails[19].

Different RAID configurations support different recovery and performance bene-
fits. The simplest of these are RAID 0 and RAID 1; RAID 0 only includes fine-
grained striping, and is used primarily to improve performance [19], while RAID 1
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mirrors its contents completely over two or more disks to provide redundancy [95].
RAID 0 provides greater capacity and performance (n times that of the smallest
and slowest drive, for n drives respectively), but provides no means of recovery if
a drive fails. RAID 1, on the other hand, provides no performance benefit and as-
sumes the capacity of the smallest drive, but is fully recoverable as long as at least
one drive remains. There are many other standard and non-standard RAID config-
urations which provide different balances of performance, reliability, recoverability
and capacity; these are, however, outside the scope of this research, and will not be
explored in this document.

3.3.5 Indexing

Indexes are supporting files generated through inspection of captures, and are used
to improve searching and analysis efficiency at the expense of additional storage
space. Capture indexes store the offsets of each packet in the capture, as well as
more specific information such as the contents of common fields, so as to avoid
re-parsing information from inefficiently organised raw packet records [26, 46, 74].

These records are often compressed and stored in efficient data structures, allow-
ing the contents of packets to be searched and analysed with far greater speed
and efficiency than can be achieved unaided. In some cases, and with enough
fields indexed, index files can effectively replace the raw capture as the primary
information source for high-level analysis and searching. Indexing approaches use
memory efficient data structures and encoding to compress generated files for stor-
age, in order to minimise the potentially substantial costs of archiving a wide as-
sortment of field values [26]. Compression requires some measure of processing
to achieve, and thus inefficient compression can limit indexing throughput. Simil-
arly, compressed data formats which are expensive to extract limit the achievable
throughput for processes which apply indexed data. Capture indexers thus focus
on highly-compressed data formats that are computationally inexpensive to read
and write.

Examples of packet indexers include pcapIndex [26] and PcapWT (Pcap Wavelet
Tree) [46]. PcapIndex is an extension to Libpcap which uses compressed Bitmap
Indexes (BIs) to archive field data, providing fast insertion rates and compact in-
dexes [26]. Later work used the CUDA Thrust API2 to generate BIs using GPU

2http://code.google.com/p/thrust/

http://code.google.com/p/thrust/
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hardware, achieving a 20 fold improvement in indexing throughput over its CPU
counterpart [27]. PcapWT provides another alternative approach, encoding index
data using wavelet trees [46]; versatile data structures based on binary trees which
facilitate efficient representation and querying of sequences [63].

3.4 PcapNg Format

The Pcap Next Generation Dumpfile Format (or PcapNg) is an attempt to address
many of the limitations of the original pcap format, particularly those listed in Sec-
tion 3.3.3. The PcapNg format is a modular approach to encoding packet records;
it greatly improves flexibility, and provides mechanisms for extensibility at the
expense of simplicity. This added complexity has had a dramatic impact on wide-
spread adoption of the format; while the original draft specification for PcapNg was
made available in 2004, it remains a somewhat experimental work in progress in
2015 [47, 132]. The format has however become more prevalent since its adoption
in 2012 as the default capture format in Wireshark3 and TShark 1.8.0 [132], and
should eventually replace pcap as the de facto open format for storing captures.

3.4.1 Blocks

PcapNg files are composed of a series of blocks that partition information relevant
to a specific aspect of the capture. PcapNg currently defines six standard block
types, and identifies seven additional experimental block types that have yet to be
formally defined [47]. In addition, the format supports arbitrary user-defined block
types that provide extensibility beyond the basic types defined in the specification.
All blocks share the same basic structure; two header fields and a footer field encap-
sulating a type-specific body, followed by zero or more options. Each block begins
with two 32-bit header fields containing the block’s type identifier and length (in
bytes), and ends with a reiteration of the block length. This allows for fast forward
and backward navigation between blocks, which in turn helps to accelerate access
to records not positioned near the beginning of the capture. This allows irrelevant
or unsupported blocks to be skipped by individual applications [47].

3www.wireshark.org

www.wireshark.org


3.4. PCAPNG FORMAT 63

Figure 3.5: PcapNg file structure.

All blocks can include any number of options, which are specified at the end of
the block’s body. Options consist of a 16-bit Option Code and and 16-bit Option
Length fields, followed by an option specific body. Most blocks define a set of block
specific optional fields, but all blocks support Comment and EndOfOptions types.
The former allows user comments to be appended to any block, while the latter
indicates that no further options are included. Options can be skipped by moving
to the next block, as they are included within the Block Length field. Figure 3.5
shows an overview of the PcapNg file structure, with blocks organised into multiple
sections.

3.4.2 Mandatory Blocks

Blocks are arranged into one or more sections, each headed by a Section Header
block [47]. PcapNg’s Section Header block serves a similar purpose to pcap’s Global
Header, providing the major and minor version numbers and the magic number so
that the file can be parsed correctly. Additional Section Headers can be added to a
capture to form multiple discreet and self-contained sections. Each Section header
includes a Section Length field to allow fast navigation between sections.

The remaining fields in pcap’s Global Header have for the most part been relo-
cated to the Interface Description block type, facilitating multiple interfaces per
section by decoupling interface information from the header. This allows multiple
interfaces to be defined within a single section. The Interface Description block
contains a 16-bit Link Type field (equivalent to the Network field in pcap’s Global
Header) and a 32-bit SnapLen field; additionally, it supports 14 different optional
field types, including fields for timestamp resolution and time zone correction pre-
viously contained in the Global Header. As with Section Header blocks, Interface
Description blocks are mandatory and each Section must define at least one, as re-
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Figure 3.6: PcapNg Mandatory Blocks

cords cannot be interpreted without the information they contain. The remainder
of block types are optional.

The basic structure of the section header block and interface description block are
shown in Figure 3.6.

3.4.3 Optional Blocks

PcapNg, at present, officially defines four optional block types that are not required
to appear in a capture file; these include Simple and Enhanced Packet blocks,
Name Resolution blocks and Interface Statistics blocks. Simple Packet blocks are
designed for efficient reading and writing, and are minimalistic as a result; they
include only a Packet Length field and the packet data, with no block specific op-
tional fields defined. Unlike pcap Record Headers, time stamp information is not
captured in Simple Packet blocks, as they are not required by all applications and
can be expensive to collect [47].

The Enhanced Packet block is more robust than the Simple Packet block. In addi-
tion to the packet’s original length, the block stores the Interface ID corresponding
to a particular Interface Description block, a 64-bit timestamp field, and a cap-
tured length field to identify cropped packets. Enhanced Packet records also sup-
port three block specific optional fields for storing link-layer flags, hashes of packet
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Figure 3.7: PcapNg Packet Container Blocks

data, and the number of dropped packets between the current and previously recor-
ded packets. Only enhanced packet blocks can be present in sections with multiple
Interface Definition blocks, since they provide an Interface Identifier [47].

The remaining two fully defined optional types store meta-information rather than
traffic itself. The Name Resolution block records one or more resolved host names
for each of a range of IPv4 and IPv6 addresses. The Name Resolution block provides
a means to store which named hosts a particular address corresponded to at the
time the packet was captured; this is useful as IP address allocations for a particu-
lar host may change over time [47]. Similarly, the Interface Statistics block stores
time-stamped global statistics for a particular interface, such as total packets re-
ceived, dropped (in general and due to lack of resources), and delivered [47].

The specification also enumerates several experimental block types. Experimental
blocks are not properly defined at this time, and have not been integrated into the
specification. These include:

• Alternative types of packet blocks

• Compression and encryption blocks

• Traffic Statistics and Monitoring Blocks

• Fixed Length and Directory (Packet Index) Block

• Event/Security Blocks
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Application, vendor or domain specific block types or block options may be defined
and added, allowing the format to support highly specialised applications beyond
the scope of the original specification. These blocks are simply skipped over by any
application which does not support them.

3.4.4 Comparison to Pcap Format

The PcapNg format addresses many of the limitations of the original pcap format,
including all those listed in Section 3.3.3. The format accelerates access to arbit-
rary packets through skippable sections, facilitates multiple interfaces, provides a
greater diversity of record types, and is easily extensible [47]. The primary draw-
back of the format is its complexity, which makes it more difficult to parse and
encode data efficiently and accurately. A direct result of this complexity is a lack of
widespread support for the format, with only partial support in a small selection of
applications [132]. This means that while the format provides the means to encode
traffic with greater accessibility and in far greater detail, it is still quite difficult to
effectively access and utilise that detail, due to limited support in existing tools.

The provision of Simple Packet Block mitigates some of these limitations, but in-
troduces two of its own. Firstly, simple packet blocks are designed for efficiency and
do not store captured length or timestamp information, primarily to improve per-
formance and reduce disk space utilisation [132]. This limits their utility in some
aspects of traffic analysis, as packet size and arrival time cannot easily be determ-
ined. Secondly, simple packet blocks do not support multiple interfaces, and thus
cannot benefit from one of the dominant features that separates PcapNg from from
traditional pcap.

As the pcap format is typically sufficient (although not necessarily ideal) for most
applications and is both widely supported and relatively simple to handle, it is still
often used in preference of the PcapNg format. This should change, however, as
the format matures.

3.5 Libpcap and WinPcap

Pcap (short for packet capture) is the de facto API for traffic capture and general-
ised filtering on most contemporary systems. Pcap was first distributed as Libpcap
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on Unix-like systems, and was later adapted independently to the Windows oper-
ating systems as WinPcap.

Libpcap was developed – along with the Berkeley Packet Filter (BPF) [9, 54] (see
Sections 4.2.1 and 4.2.5) which pcap uses to filter traffic – at Lawrence Berkeley
Laboratory, and was applied as an integral part of TcpDump [115], a command-line
network analyser which allows users to intelligently filter and query the contents
of recorded network traces. TcpDump uses the Libpcap API to record, retrieve and
filter traffic, the latter of which Libpcap achieves with the aide of a BPF-based
filtering virtual machine executing in kernel space [115].

WinPcap is implemented to closely replicate Libpcap, but substitutes BPF for its
Windows equivalent, NPF (Netgroup Packet Filter) [128]. As this research was
conducted on the Windows 7 Operating System, related testing performed during
the course of this research used the WinPcap API.

Pcap has been in use for over two decades and remains popular to the point of
ubiquity today. In addition to TcpDump (and its Windows variant WinDump), pcap
is used in many open source and commercial applications, including but not limited
to traffic sniffers, protocol analysers, network monitors and intrusion detection
systems. Most significantly, pcap is used by the IDS Snort [118], the port scanner
Nmap [65], and the protocol analyser Wireshark [51]. Wireshark’s application of
the pcap API is discussed in Section 3.6.

3.5.1 Interfacing with Capture Files

This subsection discusses how pcap is used to interface with captures. Pcap is a
low-level C API that provides methods for filtering and/or extracting raw packets
from either a live or offline packet stream [128]. Filtering and extraction are per-
formed separately and sequentially, with the former handled internally in kernel
space and the latter largely offloaded to the application developer in user space.
Both filtering and manual parsing are omittable; packet streams may be accessed
unfiltered and returned packet contents may be ignored, but applications typically
employ at least one of these functions in all but trivial packet counters.

Packets in a capture are accessed iteratively within a loop, with each iteration
returning the next valid packet in the stream [128]. If a filter is applied, any
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packets that fail to match the specified filter are transparently dropped by the
filtering virtual machine and are thus never passed to the packet iterator or the
user. Filtering is performed by either BPF or NPF depending on the host operating
system, which are discussed in Section 4.3.

The packet iterator returns records in the raw pcap record format, which consists of
a 16 byte packet header segment (comprising time stamps and length information),
and a packet data segment containing the raw packet byte stream. At this point, it
is largely up to the application developer to navigate the byte stream and extract
information from the returned and filtered packets.

3.5.2 WinPcap Performance

As a low level API for filtering and extracting raw packet byte streams on CPUs,
WinPcap performs admirably well. This is due at least in part to the continued
active development of the platform in both the Libpcap and WinPcap APIs as well
as its continued widespread use, which has resulted in improvements and optim-
isations to the architecture. It is also a partial product of the API’s scope: pcap
provides fast and efficient transparent filtering and buffering of packets from an
incoming packet stream, but leaves the actual parsing and interpretation of packet
data to the encapsulating application.

This approach ensures generality and flexibility within the user processes (limited
only by the programmer’s ability to efficiently extract and utilise the raw packets
byte stream) without interfering with or bloating the filtering process. Figure 3.8 is
included to provide an indication of the performance of WinPcap, showing the time
taken to read and optionally filter three large captures (see Table C.4) from a soft-
ware RAID array containing two SATA III SSDs (≈600 MB/s). Measurements were
taken using WinPcap 4.1.3, running in Windows 7 on an Intel Core i7-3930K pro-
cessor with 32 GB RAM (see Table C.1 in the appendices). The test program used
is a trivial iterator written in C; it does not interact with any individual packet re-
cords, dropping all returned packets immediately. Each configuration was executed
eleven times, with performance calculated by averaging the last ten iterations. The
captures used are discussed in greater detail in Section 9.4 in Part IV of this docu-
ment.

These performance figures show that pcap was able to process captures at up to
350 MB/s, with packet throughput scaling down as packet size increases. These
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Figure 3.8: Pcap packet throughput and data rate for three captures.

processes were memory efficient, with each iteration utilising roughly 5 MB of sys-
tem memory during the course of execution. These results cover only the collection,
filtering and delivery of packet records however, and each returned packet must be
processed within an external context to extract packet specific information. This
can have a severe impact on performance, as the user code segment is often signific-
antly more time consuming than WinPcap’s own filtering and collection processes,
particularly when performing detailed analysis.

3.6 Wireshark

Wireshark is a powerful and widely used cross-platform network protocol analysis
tool which employs the pcap to interface with and analyse packets within an encap-
sulating network trace [50]. Network traces may be recorded live from pcap’s net-
work tap, or loaded from packet captures encoded in a variety of open and vendor
formats (including pcap and PcapNg as discussed above) from long term storage.
Wireshark is the de facto tool for investigating the contents of network packet
traces, and provides numerous useful and varied filtering options, alongside stat-
istical and analytic functions. Wireshark is quite similar in function to TcpDump,
differing in that it supports wider functionality and better overall classification
performance, in addition to providing an interactive GUI. A command-line version
of Wireshark, called TShark, is also supplied within the standard distribution [50].
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3.6.1 Capture Analysis Process

In essence, Wireshark identifies packets iteratively (optionally filtering input us-
ing pcap’s filtering engine), adding a summary of each packet as a separate row in
a scrollable list. By default, Wireshark shows the packet’s arrival number, arrival
time, source and destination (typically either an IP or MAC address), leaf protocol
and a brief summary of the leaf protocol’s contents. Selecting a row provides a de-
tailed breakdown of the associated packet’s headers, as well as the complete packet
as a raw byte stream. The list may then be filtered using Wireshark’s display fil-
ter syntax on protocol header contents [129] to focus on a specific protocol, stream
or combination of header field values. Wireshark’s native display filters support
over 1000 protocols and 174,000 field types [129] allowing for complex dissection of
individual packets.

Packet traces are loaded (and possibly filtered) using pcap, which provides Wire-
shark with a stream of pcap packet records [51]. Each record received from pcap
is processed to extract timestamp and detailed protocol information from the pcap
header and raw packet byte stream. The resultant record, containing both the ex-
tracted details and raw packet data, is appended to the list of processed packets
and ultimately displayed as a row in the GUI. This process is performed sequen-
tially, and continues until either the packet stream or system memory is exhausted.
Filtering may be applied directly during packet acquisition (referred to as capture
filtering by Wireshark) through pcap’s native filtering engine using standard pcap
syntax. As pcap’s filtering engine is highly optimised and runs in kernel space, it
provides faster filtering at the expense of depth and functionality. As a result, it
acts primarily as an optional fast pre-filter to reduce load on display filters, which
are significantly more computationally expensive and memory intensive by com-
parison.

Wireshark provides a wealth of functionality to support packet analysis and is
highly configurable, providing facilities including but not limited to colouring packet
records based on record contents, following specific protocol streams, extracting
statistics and exporting specific packets. It supports a variety of formats includ-
ing partial support for PcapNg, which allows it to capture traffic from multiple
interfaces simultaneously.



3.6. WIRESHARK 71

3.6.2 Scaling to Large Captures

The Wireshark platform is highly effective when employed to analyse live traffic or
short-term low-volume traces. Unfortunately its current architecture scales poorly
with capture size, rendering it impractical for long term analysis and inefficient for
medium term analysis. This section will elaborate on three significant barriers to
large capture analysis, in descending order of severity. Measurements were taken
using Wireshark 1.8.3 64-bit, running in Windows 7 on an Intel Core i7-3930K
processor with 32 GB RAM, reading from a 600 MB/s SATA III RAID array.

3.6.2.1 Memory Utilisation

Excessive memory utilisation is one of Wireshark’s more significant architectural
problems with respect to large captures. Wireshark stores packet details and raw
packet byte streams in system memory for fast retrieval, which has a significant
impact on memory utilisation, as each record is guaranteed to require more storage
than the original pcap record it encapsulates. This typically requires significantly
more system memory than the total capture size to adequately contain all packet
records. As a result, memory requirements can often bloat to up to between 1.5x
and 10x the original capture size (depending on the composition of the capture).
Applying subsequent display filters may further bloat memory utilisation the first
time they are applied. For example, Figure 3.9 shows a comparison between actual
capture size and Wireshark memory utilisation for the three captures previously
shown in Figure 3.8 (due to limited host memory resources, the memory utilisa-
tions listed for captures B and C in the figure are estimates extrapolated from
partial results).

These measurements show that Wireshark is extremely wasteful of host memory,
and scales consumption with capture size. As system memory is a scarce resource
with finite capacity, the maximum capture size supported by Wireshark is determ-
inate on the executing host’s RAM.

3.6.2.2 Load and Filter Performance

Wireshark’s display filters and packet dissection processes are detailed and power-
ful, but come at high computational expense. This translates into extreme cap-
ture processing times, multiple orders of magnitude longer than the pcap API. In
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Figure 3.9: Capture size versus Wireshark memory utilisation while opening the
captures listed in Figure 3.8.

Figure 3.10: Average packet throughput and a data rate achieved while opening
the captures listed in Figure 3.8.

general, and among other factors, packet rate remains relatively constant, while
performance tends to scale inversely to capture density (i.e. average number of
packets contained per MB); higher density captures with small packets require
longer processing times than low density captures with large packets. To illustrate
this, Figure 3.10 shows the packet throughput and data rate achieved when pro-
cessing captures A, B and C as previously listed in Figure 3.8. As noted above, the
measurements reported for captures B and C are extrapolated from partial results
due to host memory limitations, and are thus only estimates.

The results presented show that Wireshark’s throughput is between one and three
orders of magnitude slower than pcap, depending on capture composition, achiev-
ing a throughput of only a few MB per second at best. Capture processing is per-
formed during both the initial loading phase and also each time a display filter is
applied to the loaded data; additional passes take roughly the same amount of time
to execute, and further increase the pressure on host memory. Wireshark’s low per-
formance is largely due to the complexity of parsing and categorising packets into
hundreds of potential protocols. Wireshark is designed to facilitate detailed ana-
lysis rather than filtering, and must parse and process every protocol defined in
every packet. This differs from pcap, which only differentiates packets into pass
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and fail categories, avoiding unnecessary complexity and increasing the achievable
throughput of packet stream filtering.

3.6.2.3 User Interface

Wireshark presents results as individual record rows in a large scrollable list, and
applies colouring rules to aid in identifying various protocol types. Again, this
design works well for relatively small captures, but breaks down entirely when
dealing with millions of records.

Wireshark presents a significant amount of detail regarding each packet within the
packet list, displaying pages of between 50 and 60 records at a time at a resolution
of 1920x1200. Displaying a million packet records in this way requires over 16,000
pages worth of complex record lines, presenting far more information than can
reasonably be considered by a user. While filtering and analysis functions can
reduce the number of records displayed, or find records of interest, these processes
are time consuming and computationally expensive, and may fail to reduce the
records displayed to a manageable number.

3.7 Summary

This chapter introduced and described how network packets are transmitted and
received by distributed hosts, how the constituent protocols of packets are typically
organised and put into operation, the formats used for recording traffic on live
networks, and the applications used to process recorded capture files.

Section 3.1 began with a brief introduction to packets as containers for data trans-
mission. Packets were described as variable length byte arrays, with payload data
encapsulated within several layers of service specific protocol headers. Each pro-
tocol header is responsible for a specific aspect of transmission, and each packet
uses multiple protocols to facilitate a particular communication.

Section 3.2 introduced the TCP/IP model for network communication, which organ-
ises protocols in the TCP/IP protocol suite into a four layer hierarchy, or stack. Each
protocol receives services from protocols at lower layers in the stack, and provides
services to protocols at higher layers in the stack. These layers include the Link
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layer, Internet layer, Transport layer and Application layer. The section concluded
by introducing the 7 layer OSI model and describing it through comparison to the
TCP/IP model.

Section 3.3 described the pcap capture format for archiving packets. The section
described how the location of each record in the capture is determined from the
offset and length of the previous record, which enforces serial and sequential access
to records and necessarily complicates the navigation of large captures. The section
also discussed RAID arrays and capture indexes, which may be used to accelerate
access to packet records and field data.

Section 3.4 described the PcapNg format, which attempts to address many of the
limitations of the pcap format by incorporating section headers to accelerate cap-
ture traversal, and a selection of additional block types to store a wider variety of
information. This section also discussed practicalities surrounding use of PcapNg,
including the fact that the PcapNg format is not yet finalised, and is therefore only
partially supported by a limited number of applications.

Section 3.5 provides an overview of the Libpcap and WinPcap APIs, which facilitate
the creation, filtering and parsing of pcap captures for *nix and Windows systems
respectively. The section discussed how these APIs are used to iteratively retrieve
a stream of packet records from packet captures, optionally removing (or filtering)
unwanted records. The section concluded by demonstrating the performance of the
WinPcap API, showing that WinPcap achieved an average throughput of between
280 MB/s and 350 MB/s, depending on the capture processed.

Section 3.6 introduced the Wireshark Protocol Analyser and detailed its capture
processing functionality. The majority of the section discussed three significant
problems associated with processing large captures in Wireshark. These relate to
excessive memory utilisation (which limits scalability), low throughput (which lim-
its performance), and dense result sets (which are difficult to navigate and apply).

This chapter has described how packets are composed and transmitted, how in-
tercepted packets are stored for long term analysis, and how the resultant packet
captures are subsequently accessed and processed. The next chapter focusses on
efficient approaches to classifying or filtering packet records, with a specific em-
phasis on general algorithms capable of classifying arbitrary protocols.



4
Packet Classification

PACKET classification refers to the process of identifying or categorising the
raw binary data contained in network packets, so that they may be handled
appropriately by the receiving host, application or service. Packet clas-

sifiers are ubiquitous in modern networks, and are critical components in many
networking domains, including but not limited to endpoint demultiplexing [135],
packet routing [113], firewalls [35, 53], intrusion detection[118], protocol analysis
[103, 129], traffic monitoring, and network administration and management. This
chapter introduces the fundamentals of packet classification, and briefly outlines
four general approaches to maximising classification efficiency.

• Section 4.1 provides some context for packet classification and introduces the
abstract classification process. The section concludes by introducing two sub-
domains of classification (referred to as filtering and routing) to provide con-
text for later sections.

• Section 4.2 describes a selection of algorithms aimed at filtering packet streams.
These algorithms are designed for flexibility and generality, and can handle
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arbitrary protocols and fields. They are heavily dependent on divergence how-
ever, and are thus difficult to parallelise in a GPU context.

• Section 4.3 describes a selection of algorithms primarily aimed at routing
and switching. These algorithms are designed for high throughput and low
latency execution, and support specific fields in select protocols. Routing al-
gorithms use a wide variety of sequential and parallel processing abstrac-
tions, and scale better to large filter sets than filtering algorithms.

• Section 4.4 describes the architecture and primary limitations of the GPF
algorithm, which used elements from both filtering and routing algorithms to
facilitate scalable parallel classification of multiple concurrent filters on GPU
hardware. This algorithm forms the primary basis for research described in
the following chapters.

• Section 4.5 briefly summarises related work in GPU accelerated packet clas-
sification. These approaches occupy different domains to the performed re-
search, but have been included for completeness.

• Section 4.6 provides a summary of the chapter.

4.1 Classification Overview

This section provides a basic overview of packet classification as it relates to this
research. Depending on how it is defined, packet classification can cover a broad
range of processes, from filtering and routing algorithms, to application demulti-
plexing and deep-packet inspection algorithms. This research focusses on classi-
fiers which target protocol headers and their fields, addressing in particular both
protocol-independent filtering algorithms and high-performance routing algorithms
(see Section 1.1.2).

4.1.1 Process

All packet header classifiers perform the same basic function: they compare in-
formation contained in a packet’s protocol header against a set of static classific-
ation rules in order to categorise the packet as a particular type [66, 113]. This
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information is then used to determine if and how to respond to the packet. Com-
plications arise due to the layered nature of packet headers (see Section 3.1); the
position of a field in a header is dependent on both the layout of its protocol, and
the header sizes of all preceding protocols in the protocol stack. The packet classi-
fication process must therefore either parse and process header fields sequentially
[7, 23], or abstract away this complexity by limiting classification to specific pro-
tocol fields [113].

Classifiers are typically optimised for specific contexts and implementation medi-
ums, and vary greatly with respect to processing abstraction, functionality, per-
formance and scope. The following section briefly introduces two such types which
inform this research.

4.1.2 Algorithm Types

The approach described in Part III of this document is influenced by two relatively
distinct types of packet header classifiers, referred to as routing and filtering al-
gorithms for simplicity. This section briefly describes these types to contextualise
later discussion of particular algorithms.

Routing algorithms are highly abstracted classifiers designed for high throughput
and low latency execution, often utilising high-performance hardware. These prop-
erties are essential in performance-critical networking applications and services
such as routing, firewalls and intrusion detection. Routing algorithms differenti-
ate packets based on the values contained in specific fields of known protocols, and
commonly target the five fields of the IP 5-tuple [113]. Some recent approaches,
however, target larger sets of field values to support the OpenFlow 12-tuple used in
virtual switching for Software Defined Networking (SDN) [36, 90, 122], a modern
networking paradigm that decouples network management from traffic forward-
ing to provide open, programmable, centralised, and vendor-independent network
management [91]. Routing algorithms are extremely diverse, scale to very large
rule sets, and have been adapted to highly parallel contexts, including FGPAs and
GPUs [40, 136]. They do not, however, generalise to arbitrary fields and protocols
easily, and have limited field coverage.

Filtering algorithms are designed for flexibility and generality [54, 135], and are
typically implemented in software targeting CPU processors. Packet filters are con-
structed as virtual filtering machines, which execute one or more filter programs
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to guide the processing of each packet’s byte stream. These programs essentially
encode a boolean-valued filter predicate composed of one or more field comparisons
to either accept or reject incoming packets [7, 9, 54]. In contrast to routing al-
gorithms, which target a limited set of fixed fields in known protocols, packet filter-
ing algorithms allow classification based on any arbitrary field or protocol header.
This makes them an attractive alternative in security related domains, such as
protocol analysis, where accuracy and coverage is a priority. They are however
substantially slower than routing algorithms due to their complexity, and typically
scale poorly to large filter sets [9, 135]. In addition, filtering algorithms univer-
sally rely on sequential decision-tree based abstractions, and are therefore difficult
to parallelise.

While filtering algorithms are poorly suited to GPU processing due to their inher-
ent dependence on branching control flow to evaluate filter sets, they do provide the
flexibility to classify against arbitrary protocols and fields. Routing algorithms,
in contrast, lack flexibility but are more architecturally diverse, with many de-
signed specifically for highly parallel environments. The GPF algorithm was de-
rived based on observations from both routing and filtering domains in order to ad-
apt protocol independent classification to a highly parallel context. The remainder
of this chapter discusses algorithms from both the filtering and routing domains,
before addressing the GPF algorithm which forms the basis for this research. An
overview of the algorithms discussed is provided in Figure 4.1.

4.2 Filtering Algorithms

Packet filters form a sub-domain of protocol header classification which facilitate
the filtering of packet streams based on the contents of arbitrary protocol headers.
Packet filters are conceptualised as virtual machines which processes incoming
packet data against a low-level filter program. Most filtering algorithms share sim-
ilar underlying architecture, and all employ abstractions similar to decision-trees
that rely on branching control flow to efficiently evaluate filters. This makes it dif-
ficult to efficiently translate filtering algorithms to a GPGPU context, where diver-
gence typically results in serialisation (see Section 2.3.3). This section discusses a
selection of packet filtering approaches, focussing primarily on early works which
developed the foundation of the domain. More recent algorithms are discussed
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Figure 4.1: Table of Algorithms

briefly, but most do not alter the processing paradigm outside of domain specific
extensions and optimisations that are beyond the scope of this research.

4.2.1 BPF

BSD Packet Filter (BPF) is an early protocol-independent packet demultiplexing
filter tailored for efficient execution on register-based CPUs [54]. It uses a RISC
(Reduced Instruction Set Computing) virtual machine, residing in kernel space, to
rapidly execute arbitrary low-level filter programs over incoming packet data [54].
BPF was developed in parallel with Libpcap (see Section 3.5) to provide the API’s
filtering functionality, a role it has fulfilled ever since.

BPF filters treat packet data as an array of bytes, and are specified via a program
written in an assembly language that maps to the virtual machine’s instruction
set. The approach does not rely on explicit internal protocol definitions to locate
and process fields, and can be used to process any arbitrary protocol [54]. The
BPF instruction set includes various load, store, jump, comparison and arithmetic
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Listing 4 Example BPF program matching TCP packets with a source port of 1234.
Adapted from [54].

1 ldh [12] //load ethertype half word
2 jeq #0x800, L1, L5 //if IP jump to L1, else fail
3 L1: ldb [23] //load IP protocol byte
4 jeq #6, L2, L5 //if TCP jump to L2, else fail
5 L3: ldx 4*([14]&0xf) //extract ip length into x register
6 ldh [x+14] //load half word at IP len + eth length
7 jeq #1234, L4, L5 //if correct port pass, else fail
8 L4: ret #TRUE
9 L5: ret #0

Figure 4.2: Example high-level Control Flow Graph checking for a reference to a
host “X”. Adapted from [54].

operations, as well as a return statement which specifies the total number of bytes
to be saved by the filter [54]. An example BPF program that matches TCP packets
with a port of 1234 is shown in Listing 4.

BPF filters may be viewed conceptually as a Control Flow Graph (CFG), where each
node in the tree contains any necessary pre-comparison operations (such as loading
values into a register) followed by a branch comparison which directs computation
to one of two possible successor nodes. Any number of paths may lead to acceptance
or rejection, allowing for significant flexibility. An example high-level CFG which
matches IP and ARP packets with a source or destination address X is shown in
Figure 4.2.
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4.2.2 Mach Packet Filter

MPF (Mach Packet Filter) was developed to provide efficient packet demultiplexing
for the Mach micro-kernel architecture, using a process and filter language similar
to that of BPF [135]. MPF added additional functionality to handle packet frag-
ments efficiently, and incorporated a scalable function to support protocol demul-
tiplexing by quickly dispatching packets to multiple end-point applications rather
than simply passing or failing [135].

MPF uses the observation that many filter programs share a common structure,
and vary only in the specific field values (such as port or address) matched by each
filter. MPF thus divides filters into two sections, comprising a common and unique
part. When multiple filters are added, MPF searches for filters with equivalent
common parts, and merges these such that the common part is only evaluated once.
To process the unique part of each filter, MPF introduced the ret_match_imm

function, which matches n field values stored in array M against n keys. The keys
of each unique match condition are added to a hash table, which is probed during
execution of the filter using the field values extracted by the common part. If a
match is found, the packet is sent to the corresponding receive port. If no match
exists, the packet is rejected by the filter set and passed to the next filter in the
chain. The primary benefit of this approach is improved scaling to multiple filters,
which allows for more efficient end-point demultiplexing of packet streams.

An example of an MPF program which matches TCP packets with a source port of
1234 and a destination port of 5678 is shown in Listing 5,

4.2.3 Pathfinder

Pathfinder was released at roughly the same time as MPF, and utilised pattern
matching techniques to facilitate both software and hardware based implementa-
tions, targeting CPUs and FPGAs respectively [7]. The software version employs
DAGs (Directed Acyclic Graphs), which prevent circular graph node traversal. This
section only considers the software version, as the hardware version is somewhat
limited in comparison [7].

In Pathfinder, pattern matching is facilitated through cells and lines [7]. A cell
is defined as the 4-tuple (offset, length, mask, value), which is used to classify a
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Listing 5 Example BPF program matching TCP packets with a source port of 1234
and a destination port of 5678. Adapted from [135].

1 ldh P[12] //load ethertype half word
2 jeq #0x800, L1, FAIL //if IP jump to L1, else fail
3
4 L1: ldb P[23] //load IP protocol byte
5 jeq #6, L2, FAIL //if TCP jump to L2, else fail
6
7 L2: ldxb 4*(P[14]&0xf) //extract ip length into x register
8 ldh P[x+14] //load half word at srcport offset
9 st M[0] //store srcport value in memory

10 ldh P[x+16] //load half word at destport offset
11 st M[1] //store destport value in memory
12
13 ret_match_imm #2, #ALL
14 key #1234
15 key #5678
16 FAIL:
17 ret #0

packet header field — located offset bytes from the start of the protocol header
and spanning length bytes — against a target specified by value. As header fields
typically span bits rather than bytes, the mask is used to remove unwanted bits
from the classification. A line is composed of one or more cells, and a packet is said
to have matched a line if all specified cell comparisons return true.

Patterns are specified as a protocol specific header declaration, which indicates
the total length of the protocol header, in combination with a set of one or more
lines. Patterns are organised hierarchically as a DAG, where the results of each
pattern determine the next pattern to apply. If a pattern specifies multiple lines,
the next pattern is determined by the best matching line. The global offset of a
field in a packet header is calculated by summing all previous matching pattern’s
specified header lengths, and adding the local offset for the cell being matched in
the current pattern. Because offsets are propagated, and not statically defined,
Pathfinder only requires a single definition for each protocol which may succeed
multiple variable or fixed length protocol patterns. Pathfinder additionally merges
similar patterns to improve scaling to larger filter sets in a similar manner to MPF,
relying on fast hash functions to differentiate between patterns which only differ
in the field values tested. Other features include packet fragment handling and
mechanisms to manage out-of-order packet delivery.
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Listing 6 Example DPF program matching TCP packets with a source port of
1234.

1 (
2 (12:16 == 0x800) && # Check protocol is IP
3 (SHIFT(14)) && # Shift to IP header
4 (9:8 == 6) && # Check protocol is TCP
5 (SHIFT((4:8 & 0xf) << 2)) && # Shift to TCP header using IP length
6 (0:16 == 1234) # Check source port == 1234
7 )

4.2.4 Dynamic Packet Filter

DPF (Dynamic Packet Filter) exploits run-time information to optimise filter pro-
grams through dynamic code generation [23]. DPF treats filters as chains of atoms
that specify bit comparisons and index shifts. Atoms are converted into filters
and merged into a trie data structure (see Section 4.3.2) to minimise prefix match
redundancy of common fields [23]. Other optimisations included dynamically con-
verting run-time variables into immediate values, while optimising disjunctions at
run-time to improve efficiency. An example DPF program consisting of five atoms
and matching TCP packets with a source port of 1234 is shown in Listing 6.

DPF also introduces atom coalescing and alignment estimation. Atom coalescing
combines adjacent atoms operating on consecutive bytes into a single atom in or-
der to reduce instruction overhead. For instance, adjacent atoms testing 16-bit
TCP source and destination ports may be coalesced into a single 32-bit atomic com-
parison. Alignment estimation (or alignment information propagation) involves
recording the effect of each individual shift of the index register in order to predict
word alignment. Repetitive shift operations may also be avoided by dynamically
propagating this information to subsequent atoms in the classification chain [23].

4.2.5 BPF+

BPF+ is a revision of the BPF virtual machine, which applies a range of local and
global optimisations to improve overall filtering performance. BPF+ translates
high-level filter code into an acyclic CFG using an SSA (Static Single Assignment)
intermediate form. SSA is a compiler optimisation technique that ensures each
register is written to exactly once, allowing BPF+ to take advantage of numerous
global data-flow optimisations [9]. Both local and global optimisations are applied
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Listing 7 Example high-level BPF+ expression matching TCP packets with a
source port of 1234. This is compiled into a form similar to Listing 4.

1 tcp srcport 1234
2 OR
3 tcp[0:2] = 1234

to the intermediate control flow graph, resulting in the optimised BPF+ byte code
(equivalent to BPF filter code).

An assortment of control flow graph reduction techniques are used to reduce the
length of the intermediate CFG. These optimisations include partial redundancy
elimination, predicate assertion propagation and static predicate prediction, as
well as peep-hole optimisations [9]. Partial redundancy elimination removes un-
necessary instructions in a particular path, such as duplicate loads or comparison
predicates. Similarly, predicate assertion propagation and static predicate predic-
tion are used to eliminate predicates which can be determined from previous com-
parisons [9]. For instance, if a CFG node n contains some comparison x = y, and a
subsequent node m in the same path as n contains the comparison x 6= y, the result
of m may be statically determined from the result of n and may therefore be omit-
ted. If m is a descendent of n = true, then m will always be false, and vice-versa.
Peep-hole optimisations find inefficient and redundant instructions, replacing or
removing them. Partial redundancy elimination, predicate assertion propagation
and static predicate prediction optimisations are repeated until such time as there
are no new changes, with peep-hole optimisations applied after each iteration.

Once the filter is delivered to its target environment for execution, a safety verifier
ensures its integrity before passing the filter to a JIT (Just-In-Time) assembler.
JIT compilation translates the optimised byte-code assembly into native machine
code, and may optionally perform machine specific optimisations when executed on
hardware rather than within an interpreted software environment [9]. An example
BPF+ high-level filter that matches TCP packets with a source port of 1234 is
shown in Listing 7.

4.2.6 Recent Algorithms

This section provides a brief overview of more recent general classification ap-
proaches that have adapted, extended, and improved upon the BPF model in vari-
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ous ways. While these algorithms provide improved performance in certain con-
texts and supply additional functionality, they do not differ significantly from BPF
or other classifiers in terms of processing abstraction.

• NPF (Netgroup Packet Filter) implements a BPF+ based filtering engine op-
timised for the Windows operating systems specifically to support WinPcap
(See Section 3.5). NPF is heavily optimised for capture recording, and provides
functions to facilitate packet injection and kernel-level network monitoring
[127].

• xPF (Extended Packet Filter) incorporates extensions for efficient statistics
collection into the BPF model [38].

• FFPF (Fairly Fast Packet Filter) uses extensive buffering to reduce memory
overhead, among other optimisations [12].

• Adaptive Pattern Matching optimises filter sets by attempting to find a near
optimal permutation of filters. This is used to minimise redundancy in the
filter CFG [69, 119].

• Zero-Copy BPF eliminates a redundant copy in BPF between kernel and user
processes by creating a shared buffer between them [104].

• Swift packet filter uses a CISC (Complex Instruction Set Computing) based
virtual machine to reduce instruction overhead and minimise filter update
latency [133].

4.3 Routing Algorithms

Routing algorithms operate at a higher level of abstraction than filtering algorithms,
processing specific field sets (usually the IP 5-tuple) rather than raw packet data
[113]. Routing filters contain an ordered set of rules which specify the individual
requirements for each field; a packet is said to match a filter if each of its targeted
fields meet the requirements for their respective rules. This simplifies both the
creation and evaluation of filter sets substantially by avoiding the complexity of
handling arbitrary fields. This also allows routing algorithms to scale far more
effectively than filtering algorithms to large filter sets.
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Most routing algorithms return a single result, corresponding to the highest pri-
ority matching rule. There are however some parallel algorithms which support
multi-match classification [40, 66], allowing a single packet to be matched by mul-
tiple rules simultaneously. This functionality is useful in circumstances where
accuracy is a priority (such as in IDSs), where missed classifications can result in
lost observations regarding network traffic. It is not as useful in contexts where
classification is used to determine the single most appropriate action, as additional
results slow performance and have limited practical use.

Routing algorithms are more varied in architecture than filtering algorithms, and
have been implemented in software and on a wide range of sequential and parallel
hardware. This section provides an overview of these approaches, and discusses
five well understood sequential and parallel algorithms.

4.3.1 Approaches

Packet classification approaches may be loosely categorised into four overarching
types: linear search, decision tree, parallel decomposition, and tuple space [113].

• Linear search is the most basic type, and operates by evaluating every rule
until a match is found or the rule set is exhausted. While this method may
be wasteful of processing resources in contrast to other algorithm types, it
is simple to program and may be easily parallelised in both hardware and
software. Linear searches are often used as a final component in more soph-
isticated and efficient algorithms, typically after the search space has been
reduced to only a few possibilities [113].

• Decision tree algorithms are quite common due to their natural mapping to
multi-variable classification [113]. While they are relatively diverse in design,
all decision tree algorithms employ some form of branching control flow to
sequentially eliminate irrelevant comparisons during execution. This is a
highly efficient approach on sequential processors, but is relatively course
grained and difficult to parallelise efficiently.

• Decomposition algorithms, which divide the classification process into sev-
eral concurrent comparisons or evaluations, provide a fine-grained alternat-
ive which is better suited to parallel execution than decision trees [113]. De-
composition algorithms evaluate field values against filter rules in parallel,



4.3. ROUTING ALGORITHMS 87

Table 4.1: Example Filter Set, showing source and destination IP address prefixes
for each filter. Adapted from [113].

Filter F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

DA 0* 0* 0* 00* 00* 10* * 0* 0* 0* 111*
SA 10* 01* 1* 1* 11* 1* 00* 10* 1* 10* 000*

and aggregate these partial results in a final step to match the packet to a
filter. Decomposition algorithms are typically engineered to accelerate classi-
fication on massively parallel hardware, and have been implemented for both
FPGAs [40, 41, 108] and GPUs [122, 136].

• Tuple space algorithms create tuples containing the number of significant bits
in each evaluated field, and probe these (either sequentially or in parallel) to
narrow the classification search space [110, 113].

The remainder of this section discusses a small selection of routing algorithms that
use decision tree and decomposition methods.

4.3.2 Trie Algorithms

Trie algorithms are decision tree algorithms which employ tries to perform classi-
fication. A trie is essentially an associative array of string based keys, where each
individual path through the trie combines to specify a unique match condition [10].
When a string is matched by a trie, each node tests a successive character index of
the string, determining which successor node the data should be processed by. If no
candidates are found, the string is not matched. Trie algorithms use bitwise tries,
which operate over binary digits rather than characters. Bitwise trie structures
help eliminate redundancy by combining common prefixes into a single string of
nodes, and map well to both exact and longest prefix match classification [66, 113].
Examples of trie-based algorithms include Set Pruning Trees [21], Grid-of-Tries
[111], and Extended Grid-of-Tries (EGT) [5]. Figure 4.3 provides an illustration of
the Set Pruning Trees approach, using the filter set displayed in Table 4.1.

4.3.3 Cutting Algorithms

Cutting algorithms are a form of decision tree algorithm which view a filter with
d fields geometrically, as a d dimensional object (or area) in d dimensional space
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Figure 4.3: Set Pruning Tree created from the filter set shown in Table 4.1. Adap-
ted from [113].

[30, 107]. The space occupied by a filter in a particular dimension is derived from
the filter’s range of values relating to that field (or dimension). Should a field value
or range not be specified in a particular dimension, the filter simply fills the entire
dimensional space.

Conceptually, cutting algorithms operate by cutting the d dimensional space into
successively smaller partitions, until such time as the number of filters contained
within a particular partition is below some specified threshold value [66, 113]. By
treating each incoming packet as a point in this d dimensional space, the packet
filtering problem can be expressed as selecting the partition within which the point
falls [66, 113]. If the threshold value is larger than one, then the highest priority
filter within the partition is accepted [30, 107]. Examples of cutting algorithms in-
clude Hierarchical Intelligent Cuttings (HiCuts) [30] and HyperCuts [107]. Figure
4.4 shows an illustration of HiCuts’ two dimensional geometric representation of
the example filter set provided in Table 4.2.
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Table 4.2: Example filter set, containing 4-bit port and address values. Adapted
from [113].

Filter A B C D E F G H I J K
Port 2 5 8 6 0:15 9:15 0:4 0:3 0:15 7:15 11

Address 10 12 5 0:15 14:15 2:3 0:3 0:7 6 8:15 0:7

Figure 4.4: Geometric representation of a 2-dimensional filter over 4-bit address
and port fields. Adapted from [113].
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4.3.4 Bit-Vectors

Bit-vector algorithms are parallel decomposition algorithms which take a geomet-
ric view of packet classification, treating filters as d dimensional objects in d dimen-
sional space, similar to Cutting algorithms [66, 113]. In each dimension d, a set of
N filters is used to define a maximum of 2N + 1 elementary intervals on each axis
(or dimension), and thus up to (2N + 1)d elementary d dimensional regions in the
geometric filter space. Each elementary interval on each axis is associated with a
binary bit-vector of length N . Each index in this N -bit vector represents a filter,
sorted such that the highest order bit in the vector represents the highest priority
filter [66, 113].

All bit vectors are initialized to arrays of zeros. Then, when a filter in a specific
dimension d overlaps an elementary range on d’s axis, the corresponding bit-vector
index is set to 1. Thus an elementary interval’s bit-vector represents a priority
ordered array of filters, where the value at each index represents whether a par-
ticular filter is active in the corresponding interval in that dimension. Each di-
mension is processed in parallel, producing a set of d bit-vectors, which, when ag-
gregated through bitwise conjunction, produce a priority ordered list indicating all
matching filters. Examples of bit-vector algorithms include Parallel Bit Vector [48]
and Aggregate Bit-Vector classification [6]. An illustration of Parallel Bit-Vector
partitioning for two fields (port and address) is shown in Figure 4.5.

4.3.5 Crossproducting

The Crossproducting method [111] is motivated by the observation that the num-
ber of unique values for a given field in a filter set is significantly less than the
number of filters in that set [113]. For each field to be compared, a set of unique
values for that field appearing in the filter set is constructed. Thus, classifying
against f fields results in f independent Field Sets, with each Field Set containing
the unique values associated with a particular field. When given a value from an
associated packet field, the Field Set returns the best matching value in that set.

When classifying d fields, this results in a d-tuple, created by concatenating the
results from each Field Set. These initial field matches may be done in parallel.
The d-tuple result is used as a hash key in a precomputed table of crossproducts,
which contains entries providing the best matching filter for all combinations of
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Figure 4.5: Example Parallel Bit-Vector classification structure over the filters de-
picted in Figure 4.4. Adapted from [113].

results [66, 113]. This method reduces an n-tuple comparison to n independent
field searches, processed in parallel, followed by a single hash look-up. This comes
at the expense of exponential memory requirements for the table of crossproducts
[111]. Specifically, the table requires

∏n
i=1 (| di |) unique entries, where | di | is the

cardinality of the set of unique entries for the ith Field Set, and n is the number of
fields being matched. An example of the Crossproducting algorithm, using three
fields, is depicted in Figure 4.6.

4.3.6 Parallel Packet Classification (P 2C)

Parallel Packet Classification (P 2C) [121] is a relatively complex, multi-stage de-
composition technique. For each field to be evaluated in the filter set, the field axis
(for instance port number) is divided geometrically into its constituent elementary
intervals, as in the bit-vector techniques. Above this axis, n layers are defined,
where each layer contains a non-overlapping subset of filters, such that each filter
is positioned over the range of elementary intervals corresponding to acceptable
values for that field. The filters contained in each layer are selected such that
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Figure 4.6: Example Crossproducting algorithm. Adapted from [113].

the number of layers necessary for non-overlapping subsets is minimised [66, 113].
The P 2C algorithm is illustrated in Figure 4.7, using the filter set provided in Table
4.2.

In each layer, the algorithm associates a locally unique binary value (using a min-
imum number of bits) to each filter contained in that layer, while empty regions are
given a binary value of zero. An intermediate bit-vector is then created for each
interval by concatenating the binary values of each layer in that interval. These
intermediate bit-vectors are used to derive a ternary string (called the Ternary
Match Condition) for each filter, which matches all intermediate bit-vectors asso-
ciated with that filter. These ternary filter strings are then stored in a priority
ordered list for classification. When a packet arrives, each field is processed in
parallel, and the resulting bit vectors from each field are concatenated together to
form a single binary string. This string is then matched against the precomputed
filter strings in priority order to find the correct matching filter.
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Figure 4.7: Example P 2C range encoding, matching port field values (y-axis) of the
filters depicted in Figure 4.4. Adapted from [113].

4.4 GPF

This section summarises the GPF algorithm [66, 67, 68, 70, 71] which provides the
foundation for the research presented in this thesis. This section also provides an
overview of the approach and architecture of this prototype, with emphasis on the
processing abstraction used. GPF was implemented to assess the viability of GPU
co-processors as accelerators for generalised packet classification and capture min-
ing [66], specifically targeting compute capability of 1.3 Nvidia GPUs. The GPF
algorithm was developed as an experimental prototype, and had a number of lim-
itations which restricted its usefulness to a research context. Despite these limit-
ations, GPF demonstrated promising performance, classifying at rates between 40
and 100 million packets per second for most filter sets when using an Nvidia GTX
480 [66]. This section concludes with a discussion of the primary limitations of the
GPF algorithm.

4.4.1 Approach

The GPF algorithm is a non-divergent, massively-parallel filter-predicate processor
created using C++ and CUDA; it is supported by a filtering DSL that was created
using C# and ANTLR1 (ANother Tool for Language Recognition) [94]. The archi-
tecture of GPF was influenced by decomposition based routing algorithms, which

1http://www.antlr.org/

http://www.antlr.org/
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Figure 4.8: Overview of GPF Architecture

employ a parallel set of comparisons for each field that are subsequently aggreg-
ated in a final step [66]. Figure 4.8 shows the high-level architecture of GPF and
its supporting host-side components. These components cooperate to evaluate mul-
tiple filter predicates concurrently without divergence, providing fast but feature
limited multi-match filtering for arbitrary network protocols.

GPF uses a coarse grained SIMD approach that allocates each packet to an inde-
pendent thread. Each thread then evaluates its prescribed packet against a filter
program stored in constant memory. The algorithm treats packet records as an
array of bits, and identifies header fields within these bits using a two-tuple con-
taining the fields bit-offset and bit-length. Packet processing is divided into two
distinct phases: a filter rule evaluation phase, where packet data comparisons are
performed, and a filter predicate evaluation phase, where the results of rule eval-
uation are used to evaluate predicates. No divergence is necessary, as all threads
process identical instructions, and all packet data is evaluated prior to the com-
putation of any predicates. In addition, field comparisons may be grouped and
ordered such that all operations can be performed in a single pass of the packet
data, which eliminates all redundant global memory reads.

4.4.2 Filter Grammar

GPF employs an assortment of CPU-based components to provide functions for
handling input and output data and compiling filter instructions. GPF uses a
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Listing 8 Example GPF high-level filter code for identifying various protocols in
the IP suite.

1 sub ipv4 { 96:16 == 2048 && 112:4 == 4 }
2 sub ipv6 { 96:16 == 34525 }
3
4 filter ip { ipv4 || ipv6 }
5 filter arp { 96:16 == 0x800 }
6
7 filter tcp { ipv4 && 184:8 == 6 || ipv6 && 160:8 == 6 }
8 filter udp { ipv4 && 184:8 == 17 || ipv6 && 160:8 == 17 }
9

10 filter icmp { ipv4 && 184:8 == 1 || ipv6 && 160:8 == 58 }
11
12 filter dns_query {
13 udpv4 && (272:16 == 53 && 288:16 > 1023)
14 }

simple DSL to specify filters, which is processed via an ANTLR grammar to pro-
duce optimised classification programs. A simple example of a filter set that targets
numerous protocols in the TCP/IP protocol suite is provided in Listing 8.

Filters may be specified as either a filter type, or a sub (for subfilter) type. The
only difference between these two types is that filter results are returned to the
host, while sub results are discarded at completion. Both filter and sub pre-
dicates may be referenced by other filter and sub predicates to compose varied
and complex filter conditions. While the high-level filter language supports paren-
thesis in filter expressions, the GPU filtering kernel does not, and so sub-equations
in parenthesis are automatically converted into unnamed subfilters to be processed
first.

The DSL filter specification is compiled into two to three distinct programs encoded
as separate integer arrays. The first program comprises all the rule comparisons
performed by the filter, grouped by field and ordered sequentially by field offset.
The remaining programs encode the filter predicates and subfilter predicates (if
they are used). Compilation also determines what regions of packet data are relev-
ant to the filter set, which is used during pre-processing to crop unused bytes from
the beginning and end of all packets. As a result, packet data records are stored
as small uniform length byte arrays, and packet offsets can easily be determined
by multiplying the thread’s global index with the cropped record size. This also
helps to reduce PCIE overhead when transferring packet data to the device for
processing.
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4.4.3 Classifying Packets

GPF uses two separate kernels to perform classification; the Rule kernel, which
process the rule program, and the Filter kernel, which processes filter and subfilter
programs. Each GPF kernel executes a set of integer encoded operations read from
constant memory. As all threads access the same instructions, constant memory
requests are never serialised and thus provide the best possible performance [86].
All threads perform identical operations at the same field offsets, but operate on
different packet data. This provides two primary benefits:

1. It exposes the inherent redundancy of protocol field comparisons in filter sets,
in that multiple distinct filters will share a significant proportion of field clas-
sifications between them [9, 113, 135]. By setting out to perform all possible
classifications from the offset, this redundancy can be fully capitalised upon
to ensure no repeated comparisons occur.

2. It allows for native and highly scalable multi-match classification, where a
single iteration can return results for many filters concurrently. As a result
of the high degree of redundancy in filter sets [113], the approach provides
better per-filter throughput when larger numbers of filters are used.

The classifier processes packets concurrently, such that each thread reads from one
or more regions of a specific packet record sequentially. As a result, threads read
from sparsely distributed memory locations, which is not conducive to coalescing
memory transactions, particularly on pre-Fermi GPUs which lacked global memory
caches (see Section 2.5). As packet data is read but not written, it is bound to and
read through a cached texture reference to improve performance [66, 86]. While a
texture reference provides initial access to packet data, the same chunk of packet
data may be used in multiple comparisons.

In order to avoid unnecessary global memory transactions, each thread maintains
an 8 byte packet cache, which is loaded in 4 or 8 byte chunks. Once a chunk of
packet data is cached, each unique field contained in that chunk is extracted and
compared against all its relevant rules, until the chunk is exhausted and the next
relevant chunk can be loaded. This process is guided by the rule evaluation pro-
gram, which indicates when to load new cache chunks, which fields to extract,
which comparisons to perform, and where to store results. Figure 4.9 shows an
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Figure 4.9: Memory architecture used by threads in evaluating filter conditions.

abstract overview of the memory architecture of the rule evaluation kernel, illus-
trating the flow of data between memory regions.

Once the rule evaluation kernel has completed, the predicate evaluation kernels
are launched. The optional subfilter evaluation kernel is processed first, but may
be omitted if no filters rely on subfilters. The filter evaluation kernel is invoked
after the subfilter evaluation kernel has completed, using subfilter results as if
they were produced by the rule kernel. These kernels differ only in where they
store results; subfilter results are stored along-side the field comparison results
generated in the rule evaluation kernel, while the filter results are stored in a
separate region and transferred to the host at kernel completion.

Both kernels evaluate predicates in a nested loop; the outer loop performs logical
disjunction on the results of the inner loop, which performs logical conjunction and
negation on boolean values loaded from rule memory. An example of the process
of encoding a single filter is provided in Figure 4.10. The integer values leading
the OR and AND lines indicate the number of operands in the operation, and thus
the number of loop iterations necessary to process each operand. The values of
a, b, c and d refer to result arrays in coalesced global memory, while the 0 or 1
preceding them indicates whether or not to invert the value. Once all comparisons
are complete, the results for each filter are transferred to the host and written to
disk, while the next batch of packets is loaded and processed.
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Figure 4.10: Encoding a single filter predicate for execution on the GPU. The num-
ber of filters to process is stored in constant memory.

4.4.4 Architecture Limitations

Due to its experimental nature, the GPF classifier has a number of limitations
which restrict its usefulness in real world scenarios. This section details the primary
limitations of the approach used above, in order to provide context for the design
of the GPF+ algorithm discussed in Chapter 6.

• GPF does not properly handle packets with variable length protocol head-
ers. As GPF does not diverge and executes only pre-compiled instructions,
individual threads are incapable of adjusting processing based on the con-
tents of packet header fields, and thus cannot handle variability in protocol
offsets. Mitigating this limitation requires support for loading and retaining
field data, performing transformations on this field data, and adjusting pro-
gram flow dynamically on a per-thread basis, without introducing significant
divergence overhead.

• GPF cannot prune redundant comparisons or filters at runtime, which causes
performance to scale linearly with compiled filter set size [66]. While avoid-
ing divergence altogether prevents serialisation within thread warps, it sim-
ultaneously prevents warps from avoiding computation that is irrelevant to
all executing threads. This approach handles commonly occurring protocols
and frequently used fields well, but becomes unnecessarily expensive when
probing large sets of fields from rare or infrequently used protocols.
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Listing 9 Example GPF filter code which replicates TCP port filters to handle both
IPv4 and IPv6 packets.

1 sub tcpv4 { 96:16 == 2048 && 184:8 == 6 }
2 sub tcpv6 { 96:16 == 34525 && 160:8 == 6 }
3
4 filter http {
5 tcpv4 && (272:16 == 80 || 288:16 == 80) || tcpv6 && (432:16 == 80 ||

448:16 == 80)
6 }

• GPF is limited in its capacity to access, analyse and collate packet field data
from a raw packet byte stream. For instance, while any TCP or UDP port
combination can be actively searched for, there is no mechanism to report
the distribution of port values. Additionally, threads cannot return related
field contents of flagged packets to the host, a function that would be useful
in supporting both capture indexing and protocol analysis (see Sections 3.3.5
and 3.6).

• The inflexibility and complexity of programming filter sets using the proto-
type DSL limits the classification engine’s usefulness outside of an experi-
mental context. This stems from having to specify the bit offset from the start
of the packet and the size of each relevant field statically by hand, which is
somewhat clumsy and requires a measure of replication to handle different
protocol compositions. For instance, TCP or UDP require separate definitions
for IPv4 and IPv6 to account for the differing lengths of these protocols, as
illustrated in Listing 9.

4.5 Related GPGPU Research

GPU accelerated classification is a relatively new research domain, with few re-
lated works currently available in the literature. The domain has seen a marked
increase in related publications over the last two to three years however, and this
trend is likely to continue as the domain matures. This section highlights a se-
lection of related works which apply GPUs to accelerate routing algorithms and
intrusion detection systems.

• 2008 – Vasiliadis et al [123] introduced Gnort, a GPU accelerated implement-
ation of the Snort NIDS which offloads payload string-matching to a CUDA
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co-processor to improve throughput. Pcap was used to supply and pre-classify
packets into port groups [123] on the host; these groups were then processed
separately against group-specific Snort rules using a GPGPU implementa-
tion of the Aho-Corasick string matching algorithm [2]. Vasiliadis et al later
incorporated this functionality into the GASPP framework discussed below
[124].

• 2014 – Zhou et al [136] described a GPU accelerated decomposition algorithm
in 2014, based on binary range trees and bit-vectors, intended for fast 5-tuple
based classification of large filter rule sets. The performance of this algorithm
was subsequently compared to a CPU implementation, showing an overall
improvement in packet throughput by a factor of two, at the expense of much
higher average latency per packet processed [136].

• 2014 – Vasiliadis et al [124] described the GASPP (GPU-Accelerated Stateful
Packet Processing) Framework for deep packet inspection and stateful ana-
lysis on live network traffic. The framework provides support for a number
of GPU accelerated traffic processing functions including network flow track-
ing, TCP stream reassembly, packet reordering, string matching, cipher oper-
ations and packet manipulation [124]. GASPP executes a sequence (or chain)
of modules, each performing a particular function, for a particular protocol,
from within a discreet kernel. GASPP currently provides modules for Ether-
net, IP, UDP and TCP, although the solution can support additional protocols
through custom modules.

• 2014 – Varvello et al [122] investigated techniques to accelerate tuple-based
classification against large rule sets for use in virtual switching. One of the
primary focuses of this work is to accelerate classification beyond the stand-
ard 5-tuple in order to support a broader range of applications, and was eval-
uated processing both 5-tuple rules and more complex 12-tuple OpenFlow
virtual switching rule sets [122]. The research investigated linear search and
tuple search algorithms, and introduced an optimised form of tuple search,
called Bloom search, which uses hash-based data structures called Bloom fil-
ters to improve encoding efficiency [122].
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4.6 Summary

This chapter provided an overview of packet classification, focussing specifically on
filtering and routing algorithms, as well as prior research.

Section 4.1 began the chapter by briefly summarising the domain. Discussion was
limited to packet header classifiers, which operate by comparing field values con-
tained in protocol headers to rules contained in filters. While both filtering al-
gorithms and routing algorithms process protocol header fields, they have differ-
ent and somewhat conflicting goals; filtering algorithms aim for high flexibility
and protocol generality, while routing algorithms are optimised for high through-
put and low latency execution.

Section 4.2 described several filtering algorithms designed for execution on CPUs,
including the BPF algorithm used by Libpcap (see Section 3.5). Filtering algorithms
utilise branching tree-based abstractions to sequentially parse packet fields and
compare them to specific rules. Filtering algorithms are highly flexible but do not
scale well to large filter sets. They are also difficult to adapt to GPU architecture
due to their reliance on decision based branching, which results in serialisation
on GPUs. Filtering algorithms execute relatively low level program instructions
which locate, extract, compare and transform field data without requiring a priori
knowledge of the protocol being processed.

Section 4.3 complemented the previous section by discussing routing algorithms,
which lack flexibility but are well suited to parallelism. Routing algorithms pro-
cess field sets rather than raw packet data, typically the IP 5-tuple of addresses,
ports and protocol. This section began by briefly describing the four overarching
approaches to this form of classification: linear search, decision tree, decomposition
and tuple space. Of these approaches, decision trees and decomposition algorithms
were considered in the most detail, through an examination of a selection of al-
gorithms.

Section 4.4 discussed the architecture and primary limitations of the GPF algorithm.
GPF was developed as a prototype while investigating methods to accelerate gen-
eral packet classification using GPUs. The algorithm decomposed filtering into
two distinct steps: building rule data and evaluating filters. Unlike filtering al-
gorithms which employ branching control flow to guide processing, GPF filters are
condensed into a single rule set, which executes every required evaluation for every
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filter on every packet. This approach exploits the redundancy in filter sets by com-
bining different rules relating to similar fields into a single operation. While the
GPF algorithm produced promising results, it lacked important functions (includ-
ing optional field and variable length protocol handling) that limited its usefulness
outside of a research context.

Section 4.5 briefly summarised research related to classification on GPUs. The
research described in this section is tangential to this project, and relates primarily
to routing algorithms, deep packet inspectors and intrusion detection systems.

In the following part of the document, the design and implementation of GPF+, its
supporting pipeline and example applications are discussed in detail.
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5
Architecture

PART III of this document discusses the design and implementation of a
packet classification system specifically intended to accelerate analysis of
bulk network traffic. This chapter aims to break down and compartment-

alise the various functions of the classification system into a set of components.
The system relies on a variety of different processes that span multiple domains,
and thus discussing them as a unified whole is somewhat complex. Dividing the
system into components that can be discussed independently provides a means of
managing this complexity.

This chapter provides a general overview of the classification system, summarising
the high-level architecture and introducing its various discreet components. It
also describes the two simplest components – the capture buffer and pre-processor
– which load and prepare packet data for classification. The classifier itself is
described in greater detail in Chapters 6, while the DSL used program is discussed
in Chapter 7. Example post-processors which use the system outputs are addressed
last in Chapter 8. This chapter is structured as follows:

• Section 5.1 introduces the classification system, and addresses some high-
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level aspects of design, including how programs are encoded, how classifica-
tion is abstracted, and how raw capture data is handled.

• Section 5.2 explains the high-level architecture of the processes which com-
prise the classification process, and discusses how individual components
communicate across thread and execution context boundaries.

• Section 5.3 discusses each of the system components in turn, contextualising
their specific roles within the classification process.

• Section 5.4 discusses the capture buffer component, which is a simple but
performance critical function responsible for reading in packet data for use
by the system.

• Section 5.5 discusses the pre-processor, which parses packets from raw cap-
ture data and re-packages them for the GPU classifier. The pre-processor
also handles the creation of capture index support files; these files are not
currently used during classification, but are important to post-processors in
facilitating capture navigation and the generation of capture-wide metrics.

• Section 5.6 provides a summary of the chapter.

5.1 Introduction

Processing large packet traces at high speed is a conceptually simple but resource
intensive process, constrained at the system hardware level by I/O (Input/Output)
performance, system memory and processing capacity. The implemented architec-
ture takes advantage of the capabilities of modern CUDA GPUs to construct a fast,
flexible and programmable packet classification pipeline. This pipeline is intended
to accelerate the processing of arbitrarily large packet captures, and simplify the
means by which they can be explored and analysed.

5.1.1 Implementation Overview

The implementation discussed in this part of the document is composed of a collec-
tion of components that cooperate to efficiently process large capture files. Figure
5.1 shows a simplified outline of the system architecture
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Figure 5.1: High-level implementation overview.

The primary component in this system is a CUDA-based general packet classifier.
The classification process, referred to as GPF+ to distinguish it from prior work,
is implemented as a device-side object that is instantiated within an executing
kernel. This object facilitates the extraction of both bit-based filter results and in-
teger encoded field values from raw packet data. GPF+ uses a stack-based abstrac-
tion that facilitates protocol pruning, reduces filter replication, handles variable
length protocol headers, and simplifies filter creation. GPF+ is discussed in detail
in Chapter 6.

The GPF+ classifier is supported by a multi-threaded system of host-side compon-
ents executing in a C++ process that load, pre-process and deliver packet data to
the GPU based classifier, while collecting and storing all classification outputs and
index data. This system is specifically intended to accelerate the processing of large
capture files (see Section 3.3), and is constructed using a pipeline of asynchronous
threads connected via message queues. Its primary components are discussed later
in this chapter.

GPF+ evaluates filter programs produced by a DSL component, implemented in C#
and housed in a separate process (Client in the figure). The high-level grammar
syntax defines protocols as object-like structures, and chains these together to cre-
ate a protocol library. Filters then reference protocols and fields in this library to
construct filter sets. This separates the description of protocol structure from filter
definitions, allowing protocol structures to be reused in multiple filter sets without
redefinition. The DSL and its grammar are described in Chapter 7.

The system provides three proof-of-concept post-processing functions which ap-
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ply the outputs of the classification system to accelerate aspects of trace analysis.
These post-processors include (in order of decreasing complexity) a component to
visualise captures and filters, a function to generate (or distil) pre-filtered sub-
captures from results, and a simple CPU process that maps and displays the com-
position of specific field results. The components are discussed in Chapter 8.

The architecture of the classification kernel and its supporting pipeline were de-
rived through experimentation and extensive performance testing. This provided
an experimentally informed indication of the relative performance of approaches
to sub-problems. Experimental evaluation and synthesis of components was most
heavily utilised in the development of the GPGPU processes, where even minor
differences between implementations can result in differing occupancy, bandwidth
efficiency, processing latency and/or serialization. In general, approaches were in-
vestigated to ascertain relative throughput, resource utilisation, occupancy and
other metrics, and developed along the most promising lines.

5.1.2 Program Encoding

Program encoding has a significant influence on the design of the classification
kernel and its supporting infrastructure, as it dictates to a large extent how fil-
tering is performed. This section briefly introduces the basic premise of the GPF+
program encoding, and how it relates to both GPF and more traditional assembler
style syntaxes.

In order to play to the strengths of the prevailing CUDA architecture, the ori-
ginal GPF kernel interpreted a rigidly structured stream of commands in fixed
sequence, which ensured that all threads executed identical instructions. This ap-
proach avoided thread divergence overhead in exchange for additional redundancy
during classification (see Section 4.4.2). The GPF classification approach could in-
terpret pre-compiled commands efficiently, but it could not adjust processing based
on packet or protocol contents, limiting its ability to handle complex packet records.

The feasibility of utilising a more traditional assembler style syntax to provide
this flexibility was explored initially as an alternative to the approach established
in GPF, but investigations into a correlating CUDA kernel architecture failed to
approach competitive throughputs. GPF+ instead uses an abstraction derived
from the process used in GPF that incorporates local state variables and restricted
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Figure 5.2: Layers and protocol pruning for a warp containing only TCP and UDP
packets, encapsulated in IPv4 frames.

branching to improve efficiency and flexibility, while providing new functionality
to complement filtering.

5.1.3 Processing Abstraction

The architecture of the GPF+ classifier extends the basic approach used in earlier
work. It achieves this by incorporating a more refined processing abstraction that
maintains and utilises local state variables to dynamically adjust processing to
warp requirements at runtime. This section provides a brief overview of the pro-
cessing abstraction used in this revised approach, and explains how it differs from
that of the GPF prototype.

In the GPF prototype, packet data was treated as a byte stream containing fields
of known size at predetermined bit offsets at compile time. This was by design,
following the example of filtering algorithms, which treat all packets as byte ar-
rays to ensure protocol independence and provide maximum generality (see Section
4.2). The GPF+ process uses a more developed abstraction, which organises clas-
sification into hierarchical layers of concurrent protocols, analogous to the protocol
stacks in the TCP/IP and the OSI models (see Section 3.2).

GPF+ conceptualises packet records as being composed of layers of fixed and vari-
able length protocol headers, each containing fields at known offsets within the
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header. Each protocol layer contains one or more disjoint protocols, each of which
may connect to one or more child protocols in subsequent layers. This abstraction
allows for greater flexibility and helps to reduce redundant processing, as both
individual protocols and entire layers may be skipped or pruned by the classifier
through warp voting (see Section 2.7). An illustration showing the layer organisa-
tion of an example filter set is shown in Figure 5.2. In the figure, the programmed
path represents the filter sequence encoded in the GPF+ program. The pruned
path is the resultant path in a warp matching only IPv4 TCP and UDP packets.

This functionality is achieved through a small internal set of state variables which
store context information needed to guide and optimise the processing of each layer,
tailored to the thread warp in question. The updated approach also adds support
for extracting, operating on and storing field values, and can apply these values
within numeric expressions. Numeric expressions are currently used to handle
protocol length fields exclusively, but could be extended to support more general
computation. The implementation of the classification kernel is expanded on in
detail in Chapter 6.

5.1.4 Handling Capture Data

A notable concern for developing a scalable system to support large capture pro-
cessing is the associated memory allocation and storage costs of unbounded quant-
ities of packet data and results. As the system must support capture traces far
exceeding the memory capacity of even high-end desktops, it is impractical to rely
on raw packet data stored in host memory (see Section 3.6.2). Similarly, as the
amount of data contained within the generated results scales with respect to packet
count and thus capture size, results data cannot be stored entirely in host memory
either, as this would ultimately place limits on the maximum capture size. The
system produces and subsequently employs compact index, filter and field results
to allow post processors to operate independently of raw packet data, alleviating
the need to repeatedly re-parse the raw capture. The implementation is designed
to minimise interaction with raw capture data as much as possible, and requires
only a single pass over the capture data to generate all outputs. This approach
ensures scalability to large captures, and limits I/O overhead from capture data by
avoiding repeated loads.
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5.1.5 System Interface

The classification system is encapsulated within a C++ application that executes
either as a stand-alone application or as a server for a client process. The system
defaults to a server configuration, where it awaits a connection from a C# client ap-
plication via a TCP channel. Once a connection has been made, the server receives
execution arguments and compiled program code (emitted from the DSL) from the
C# client, and initiates the main classification loop. Once the process completes,
the server signals the client, indicating that the outputs have been generated and
may be used.

The stand-alone configuration is more straight-forward, taking its inputs from the
command-line to simplify automated or batch processing. This interface was in-
cluded primarily to aide in testing, and currently lacks access to a native DSL com-
piler; at present, it relies on externally compiled programs created by the C#-based
DSL in the current implementation.

5.2 Process Overview

This section describes the high-level components which comprise the critical func-
tions within the classification pipeline. It should be noted for clarity that the high-
level components discussed in this section are logically grouped into discreet units
primarily to facilitate discussion, and may refer to multiple sets of processes which
share some similarity of purpose or implementation, but do not necessarily interact
directly.

5.2.1 Processing Captures

This section describes the processing of a packet capture within the framework
chronologically, in order to introduce and contextualise the primary components
within the system. Figure 5.3 shows the primary abstract system components, and
how they are connected to facilitate capture classification.

The classification system relies on two separate processes; a C++ server applica-
tion, which is responsible for performing classification, and a C# client application,
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Figure 5.3: Abstract overview of components and connections of the implemented
classification system.

which is responsible for program compilation, initiating classification, and present-
ing results. These processes communicate with each other via TCP, and can poten-
tially execute on different hosts. Processing is initiated by the client process via a
GUI (Graphical User Interface) input form, taking as input a packet capture file,
a filter program, and process configuration. The program specification is passed
to the DSL compiler, which processes it to produce the GPF+ program set for the
classifier, as well as a collection of derived operational parameters and runtime
constants. The client passes this configuration to the server to initiate the classi-
fication process.

On receipt of program instructions, the server initiates the main classification loop.
This loop iteratively reads, pre-processes and classifies capture data, and writes
the computed results to long term storage for future use. Raw packet data is buf-
fered into memory by processes within the capture buffer component, and is passed
asynchronously to the pre-processor in a different thread. The pre-processor parses
packet records from the incoming raw capture data, copying packet segments into
statically sized CUDA buffers; these are dispatched asynchronously to the classi-
fier when filled. The pre-processor may additionally record indexing information,
which is required by both the capture visualisation and capture distillation post-
processing components (see Chapter 8).

The CUDA classification kernel is managed by a dedicated host thread within the
server process. The host thread uses multiple streams to copy incoming packet
data to the device and initiate classification asynchronously. The GPF+ kernel
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Figure 5.4: Example 0MQ messages.

evaluates the device-side data against the GPF+ program specification, producing
results which are in turn copied asynchronously back to the host, and ultimately
written to file. Once all packets have been processed, the client is signalled and the
process ends.

5.2.2 Connecting Threads and Processes

Threads within the performance-critical C++ binary are connected together using
0MQ1 (Zero Message Queue) sockets [33]. 0MQ is a high-performance, low-level
C messaging API designed to facilitate communication between asynchronous dis-
tributed or concurrent processes executing on heterogeneous platforms, with min-
imal overhead and maximum portability. To this end 0MQ treats all messages as
length specified byte arrays, leaving the programmer responsible for the conver-
sion of variables, objects and data structures to and from the byte array message
[33]. Examples of three 0MQ messages are provided in Figure 5.4.

Sockets typically communicate using the inproc (in-process) transport layer, which
creates a flexible, direct and exclusive message pipeline between precisely two par-
ticipating threads. An exception to this exists between the sockets which commu-
nicate between the C# client application and the C++ classification server. As com-
ponents execute as separate binaries within both managed (C#) and unmanaged
(C++) environments, they cannot communicate through inproc [33], and instead
connect using a simple request-reply pattern over TCP.

For the most part, 0MQ sockets act as asynchronous and direct buffers between
concurrently executing paired threads in a particular process, and pass large chunks

1http://zeromq.org/

http://zeromq.org/
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of data via pointers to avoid unnecessary and expensive copies. As pointers can-
not be passed between execution contexts, server threads communicating in this
manner are tightly bound, and cannot be easily fragmented into distributed sub-
processes [33].

5.2.3 Buffer Architecture

The host process is in essence a collection of independent but cooperative threads,
coordinated through asynchronous inter-thread message passing. Components are
connected to form a pipeline that carries large volumes of packet data from the
packet reader, via the pre-processor, to the indexing and classification components.
At the same time, output produced by the indexer and classifier is dispatched to a
file writing component where it is ultimately written to long-term storage.

Due to the volume of data that this process needs to pass between components
in the application’s critical path, it is important to minimise memory copy over-
head between participating threads. This is achieved primarily by utilising pairs
of 0MQ sockets to pass pointers to data asynchronously over an inproc commu-
nication channel. A benefit of using 0MQ for this purpose is that it acts as a
high-performance buffer between components. Each 0MQ communication chan-
nel is in effect a queue, storing messages in order of arrival until they are retrieved
by the destination thread. If a thread attempts to retrieve a message when none
are immediately available, 0MQ seamlessly ensures that the request blocks until a
message becomes available. This greatly simplifies passing data between threads,
as it removes the need for mutual exclusion or critical sections, and provides a
measure of asynchronicity between producer and consumer threads [33]. Buffers
are passed as 8-byte pointers to avoid expensive and unnecessary copy overhead
between threads in the process. A simplified illustration of the flow of buffers
between the primary system components is shown in Figure 5.5.

All buffers are statically allocated during the initialisation process, and are then
reused repeatedly until processing completes. The implementation avoids dynamic
allocation wherever possible, as it can negatively impact performance. Dynamic
allocation refers to producer threads which allocate memory on demand during the
course of processing, and expects the consumer thread to deallocate the memory
once it has finished with it. This has the benefit of allowing the producer to execute
with greater asynchronicity, without reliance on an external source to provide it
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Figure 5.5: Buffers and system data flow.

with empty buffers. Dynamically allocating and deallocating memory is expensive
however, and can increases pressure on host memory resources when allocating
buffers for high data throughputs.

Static allocation, in contrast, does not have these drawbacks. Using static alloca-
tion, a small set of buffers are allocated once and passed back and forth between
the producer and the consumer in a loop; they are only deallocated once all other
processing has completed. As allocation only occurs during the construction phase
of the object, allocation is a once-off cost that does not scale with capture size. In
addition, the limited number of buffers in circulation prevent run-away memory
utilisation, as an over-productive producer thread will eventually have to wait for
an empty buffer to become available.

5.3 Components

This section summarises the components of the architecture and provides a more
concrete outline of their roles within the classification process. This serves to con-
textualise discussion in the remainder of Part III.

5.3.1 Capture Buffer

The capture buffer is the primary input process and acts as the interface between
long-term storage devices and the other components of the classification loop. The
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capture buffer reads in raw packet data from capture files and dispatches that data
to the pre-processor. Due to the relatively slow speed of long-term storage devices,
reading capture data can present a potentially critical bottleneck when read from
a slow medium. To overcome this to some degree, the input components include a
simple hardware-independent mirrored file reader that can concurrently read from
multiple copies of a capture on different storage devices to increase its throughput.
This process is discussed in Section 5.4, after the system components have been
described.

5.3.2 Pre-Processor

The pre-processor is responsible for preparing packet data for GPU processing,
copying relevant sections of raw capture data into CUDA buffers for use by the
classifier. The pre-processor is also responsible for index generation and storage,
which it performs concurrently with packet record copying. The pre-processor and
its functions are discussed in Section 5.5.

5.3.3 Classifier

The GPF+ classifier encapsulates the components responsible for processing packet
data to produce the results requested in a filter program, and is capable of pro-
ducing both filter and field results. Filter results contain the Boolean results of
a particular user-specified filter predicate, encoded as a compact stream of bits,
while field results store the numeric values contained within a particular header
field as an array of 32-bit integers. Multiple field and filter results can be produced
simultaneously in a single pass, even if they target entirely different protocols.
These results are extremely useful when paired with the index files generated by
the pre-processor, as together they provide an indexed database for the results of
any performed classification or requested field value. Chapter 6 details how this is
achieved.

5.3.4 Compiler

The compiler processes filter programs in the form of a high-level domain specific
language constructed using the ANTLR API (using C# bindings) to produce the in-
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structions which guide the main classification process. The compiler is implemen-
ted in C# primarily for the purposes of rapid development. Programs targeting the
DSL are divided into a protocol library and a kernel (or main) method. The protocol
library is comprised of multiple class-like structures which map out the structure
of, and relationships between, required protocols. The kernel function leverages
the structures defined in the library in order to specify the filter and field values to
be collected during classification. The compiler outputs a compiled set of program
instructions that can be interpreted by the GPF+ classifier, as well as a collection
of runtime constants and pre-processor directives used in various parts of the end-
to-end system process. Discussion of the compiler is deferred to Chapter 7, after
the underlying machine has been described.

5.3.5 Post-Processors

Post-processing comprises a loose grouping of components which are not directly
involved with the classification process, but apply the results of classification once
the process is complete to provide useful end-user functionality. The post-processor
components support three separate functions that serve as example applications.
These include:

1. Visualisation of captures and filter results using OpenGL. Visualisation is
facilitated through the use of the generated index files and classification res-
ults, and comprises components for high-level capture exploration in real-
time through a basic graph-based interface.

2. Distillation of pre-filtered sub-captures using index files and filter results.
Distillation uses the same inputs as visualisation, but uses these inputs to
prune and filter the raw capture they relate to, producing smaller pre-filtered
and/or temporally cropped captures. These smaller captures are easier to
process and analyse in specialised applications such as Wireshark.

3. Generating simple field distributions from extracted field values. This func-
tion represents a simple program which derives the distribution of values
contained by a specific protocol field within the capture, using extracted field
data stored in an output field file as input.
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Post-processing components are discussed in Chapter 8 as working examples of
how the results generated by the classifier can be used to accelerate capture ana-
lysis.

5.4 Reading Packet Data

Buffering packet data into host memory is one of the most performance-critical
procedures in the current classification system for two key reasons. Firstly, it is
a prerequisite to all functionality, as all components are designed to interact with
either packet data or the processed results of packet data. Secondly, it depends on
long term storage, which is severely bandwidth limited, particularly when reading
from HDD drives (see Section 3.3.4). As packet data is prerequisite to classification,
the speed at which these files can be buffered into memory limits the speed at which
the classifier can operate.

While RAID arrays provide a means of improving read performance [19, 95], they
are independent of the classifier and are managed either in hardware or by the
operating system (see Section 3.3.4). RAID arrays are not always convenient, as
they rely on properly formatted data at a partition level, and require multiple com-
parable dedicated drives to operate efficiently [19, 95]. This requires investment
of both time and resources on the part of the user. To provide an alternative for
once-off processing that produces similar speed up but does not require multiple
dedicated pre-formatted drive partitions, the system implements a simple optional
mirrored read method that can interleave capture data collected from multiple file
copies simultaneously.

In mirrored reading, file access is split across an arbitrary number of drives, each
concurrently contributing a portion of the requested data. The approach does not
perform any formatting or data-striping, and instead reads different segments (or
stripes) from multiple mirrors of the file on different drives. This simplistic ap-
proach has the benefit of being able to support arbitrary numbers of dissimilar
drives on demand with no significant setup, data re-formatting or pre-requisite
partitioning.

The following subsections describe the standard capture buffering process and the
mirrored reader in more detail.
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Figure 5.6: Reading from a single file source.

5.4.1 Reading from a Single Source

The simplest means of reading packet capture data is from a single source file,
as it is an entirely serial process with no internal parallelism or concurrency to be
managed. While reading from a single source is certainly slower than reading from
multiple sources at once, it is more than sufficient performance-wise for most mod-
erately sized captures. A high-level overview of the single file reader is provided in
Figure 5.6.

The essential function of the reader is to get raw packet data into host memory
as fast as possible, where it may be processed to produce filters and index files.
This process is performed from within a dedicated thread which dispatches and
reacquires buffers through separate 0MQ sockets. Before beginning the read pro-
cess, the thread first determines the size of the capture and divides it conceptually
into a sequence of 8 MB blocks. These are read sequentially into a revolving set
of statically allocated 8 MB buffers. Once a buffer has been filled, it is dispatched
asynchronously to the host process via 0MQ and replaced with an empty buffer
from the empty queue. Dispatched buffers are processed sequentially by the host
process, which returns each emptied buffer through a socket pair to the reader
thread before acquiring another full buffer.

5.4.2 Reading from Multiple Sources

Reading captures from multiple sources is a slightly more complex process than
its single file counterpart, due to the need to efficiently coordinate file reads, and
interleave the results for consumption, by the pre-processor thread. The mirrored
reader uses n + 2 threads to process data from n separate sources. Packet capture
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Figure 5.7: Reading from multiple file mirrors on distinct local drives.

data is read using n worker threads, each of which handles a separate input file.
Worker threads are coordinated by a distributor thread, which supplies read offsets
and empty buffers on request. Workers send filled buffers to a collector thread,
which interleaves and re-transmits buffers to the pre-processor thread for indexing
and trimming. The pre-processor returns the buffer to the distributor once it has
been processed, where it joins the empty buffer queue to be reused. Figure 5.7
shows an overview of the mirrored file-reading process’s primary components and
connections.

The distributor thread is responsible for launching both the worker and collector
threads, and provides workers with jobs to perform and buffers to write to. When
reading from n files, the distributor uses an array of n pair sockets to manage con-
nections to worker threads, which are polled in a loop for requests. The distribution
of work is done on a first-come first-serve basis, providing a simple means for drives
of different speeds to cooperate effectively. Workers which perform well complete
their assigned tasks faster, and thus request work more frequently than those that
perform badly.

Like the single source reader, packet data is read into 8 MB buffers which are dis-
patched to the pre-processor in sequence order. Buffers are organised into batches
of eight contiguous buffers, such that each batch covers a unique 64 MB segment of
the capture. Batches of contiguous buffers are issued to workers in order to reduce
the number of seek operations needed during the reading process, without having
to adjust buffer granularity. When a worker thread makes a request for work, the
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Figure 5.8: Dividing captures into batches of buffers.

distributor supplies it with a batch to process and passes the necessary buffers as
additional messages that can be read on demand by the worker. This ensures that
if the distributor cannot immediately supply enough buffers at the time of the re-
quest, the worker can still begin filling those that are available. Each dispatched
buffer in the batch has an associated incremental identifier which identifies its rel-
ative position in the overall buffer stream – buffer 0 points to the first 8MB of data,
buffer 1 points to the second 8MB of data, and so on (see Figure 5.8).

A job comes to a worker in the form of a start offset and a series of buffers to facil-
itate the operation. Workers send filled buffers, labelled with their identifiers, to
paired sockets in the collector thread, which receives these messages in a polling
loop. The collector thread is responsible for redistributing the buffers it receives in
the correct order, and uses the unordered map data structure2 from the C++ stand-
ard library to temporarily store buffers that arrive ahead of schedule. When the
collector receives a message, it first checks the job’s ID to see if it is the message
it is waiting for. If the ID of the job matches the next expected ID, the job’s buffer
is sent to the pre-processor and the collector begins looking for the next job in the
chain. If the ID does not match, the message is stored temporarily in an unordered
map, indexed by job ID, and the collector moves to process the next received mes-
sage. Once the expected message is received and resent, the collector retrieves and
dispatches any buffers that directly follow the sent buffer in sequence that arrived
early.

5.5 Pre-processing Packet Data

This section describes the process by which packet data passed from the capture
reader is indexed and prepared for filtering. This process is quite simple in com-
parison to other aspects of the system, and not particularly time-consuming on its

2http://www.cplusplus.com/reference/unordered_map/unordered_map/

http://www.cplusplus.com/reference/unordered_map/unordered_map/
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own.

5.5.1 Parsing Packet Records

The primary function of the pre-processor is to parse packet records from raw input
buffers, so that they may be processed in the classification kernel. The process iter-
ates through each packet, collecting header information and copying the required
portion of the data into write-combined, page-locked buffers that can be transferred
quickly over PCIe to the classifier. This copy is expensive, but also significantly re-
duces the amount of data needed to be transferred to the GPU. This is particularly
true for packets with large payloads (such as those produced by streaming multi-
media or file transfers for instance) where the relevant portion of the header may
account for only a few percent of the packet’s total size. A downside of this ap-
proach is that it has the reverse effect when packet sizes are particularly small. If
a packet is smaller than the specified filter range (or window size), it is padded with
null bytes to bring it to the correct size; this means that if the GPF compiler de-
rives a window size for a filter that is larger than the average packet size, it would
net-increase the amount of PCIe traffic and device storage required to process it,
if only by a relatively small amount. While not ideal, the significant potential for
transfer and storage reduction in larger packets outweigh the minor performance
losses possible in smaller packets at this time, particularly since the former is far
more likely in most scenarios.

Once the index information has been captured and the relevant data in the packet
has been copied, the process moves to the next packet, iterating through the buffer
until it is exhausted. The buffer is then returned, and a new buffer is acquired. As
packets are not aligned to the beginning of each buffer when read, there is a high
probability that a packet will overlap two buffers simultaneously – being partially
contained at the end of the first and the beginning of the second respectively. These
edge cases are handled with a 64KB overflow buffer that copies and stores both
fragments for extraction. As the pre-processor iterates through each packet record,
the index information and classifier data buffers are filled and dispatched to the
index writer and classifier threads respectively.
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Table 5.1: Index Files
File Index Contents Record Size

Packet Index Byte offset for every packet in the capture. 64-bit
Time Index Index of the first packet to arrive after each second. 64-bit

Figure 5.9: Overview of packet and time index files.

5.5.2 Index Files

The indexing component produces a packet index file and a time index file for the
capture being processed, as listed in Table 5.1. The packet index file begins with
a 64-bit packet count n, followed by n 64-bit bytes offsets. The use of 64-bit values
is necessary, as 32-bit byte offsets would limit the maximum capture file size to
only 4 gigabytes. The time index file begins with a 64-bit integer t indicating the
total time span of the capture in seconds, followed by t 64-bit packet indexes (one
for each elapsed second in the capture), which refer back to the packet index file.
Specifically, each time index record contains the packet index of the first packet
recorded t seconds after the capture start time. If no packets are recorded as arriv-
ing during a period spanning m time index records (tn to tn+m−1), all these records
point to the next packet to arrive (tn+m). An overview of the relationship between
index files and the capture is provided in Figure 5.9.

5.5.3 Writing Index Files

Index data produced by the pre-processor is passed via 0MQ to an asynchronous
listening thread, which writes the data to file. Packet and time index data are
collected in separate buffers that are dispatched, once filled, to the listening index
writer thread. The index writer determines the type of buffer data received from
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the message header, and appends the chunk to the corresponding packet or time
index file. Once the capture has been fully parsed, the index writer updates the
record count in each index header to reflect the number stored, closing the files
once this has completed.

5.6 Summary

This chapter served as an introduction to the classification approach and its requis-
ite components, providing a context for component specific discussions contained in
the remainder of this part.

Section 5.1 provides a concise overview of the implementation discussed in this
part of the document. This section explained some high-level attributes of design
relating to the classification kernel and its supporting host process. The section
additionally described the basis for the program encoding used and its importance
in informing kernel architecture, and introduced the GPF+ processing abstraction
using GPF as a point of comparison.

Section 5.2 provided an overview of the high-level system architecture and its
primary components. This section introduced the compiler, capture buffer, pre-
processor, classifier and post-processor components, and elaborated on the basic
process by which classification results are produced. The section also introduced
the 0MQ framework, which connects components executing across multiple threads
and execution contexts.

Section 5.3 provided a brief summary of the components introduced in the previous
section, indicating where they are discussed in the document. This section also
provides more specific context for each of the components, and details their primary
roles.

Section 5.4 discussed the process of reading capture data using the capture buffer,
either from a single source file, or by using multiple mirrored copies of a file to
achieve higher throughputs.

Section 5.5 described the pre-processor thread, which receives buffers from the
capture buffer to parse out packet records. The pre-processor packages packet data
and passes it to the classifier, while optionally generating indexes of packet byte
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offsets and arrival times. These index files were additionally shown to be useful in
deriving traffic metrics.



6
Classifying Packets

PACKET classification is performed on the GPU through the execution of a
CUDA kernel. This is in turn dispatched and maintained by a dedicated
thread on the host system. The classification kernel executes a program

compiled from a high-level DSL (see Chapter 7), evaluating filters and extracting
field values from packet data delivered from the host (see Chapter 5). This chapter
focuses specifically on the CUDA classification kernel’s design and implementation.
The chapter is broken down as follows:

• Section 6.1 introduces the classification process and kernel architecture de-
scribed in the remainder of the chapter. This section describes the classific-
ation approach and addresses how processing threads avoid synchronisation,
and are divided between multiple asynchronous streams.

• Section 6.2 describes the constant memory space, which houses a range of
static variables and arrays used by the classification process.

• Section 6.3 details the system registers maintained in the classifier’s runtime
state memory. These variables are adjusted frequently during the course of
execution, and are used to adapt processing to the packets being processed.

125
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• Section 6.4 provides an overview of the classifier’s global memory regions,
which house raw packet records, working data and results.

• Section 6.5 discusses the packet cache, which acts as the interface to packet
data stored in global memory.

• Section 6.6 provides an overview of the gather process, focussing on the layer
processing function responsible for initiating cache loads, pruning redundant
operations, and dispatching the field processing function.

• Section 6.7 describes the field processing function, which applies the packet
data extracted from cache to produce temporary comparison results, extract
field data, and update state memory.

• Section 6.8 details the filter process, which applies the temporary comparison
results generated by the field processing function in the gather process to
evaluate filter predicates.

• Section 6.9 concludes with a summary of the chapter.

6.1 Classification Process

This section expands upon the basic underpinnings of the abstract GPU classific-
ation process presented in Section 5.2, describing the process in more detail as a
prelude to a discussion of its implementation. The following subsections provide a
more thorough breakdown of how classification and filtering is performed, and con-
clude with an overview of the features provided by the approach. The remainder of
the chapter focuses in greater detail on individual aspects of this process.

6.1.1 Process Overview

The classification process is implemented as a device-side object that executes
within a CUDA kernel. This object evaluates packet records against a byte-based
filter program, with the aid of constant and register memory, recording results as
ordered arrays in device memory. Results include bit-based filter results computed
from filter predicates, and field values extracted directly from protocol headers.
Listing 10 shows how the GPF+ classification object is initialised and executed
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Listing 10 Declaring and using the GPF+ classifier object.

1 __global__ void GpfProcessor(int stream_no)
2 {
3 GpfVm vm(stream_no);
4 vm.Gather();
5 vm.Filter();
6 }

from within a CUDA kernel. The object constructor is passed a single argument
by the executing kernel, identifying the execution stream it is associated with (see
Section 6.1.5). All other configuration variables and memory pointers are stored
in constant memory to support fast global access from all classifier functions (see
Section 6.2).

The classification object provides a constructor and two methods, dividing classi-
fication into three distinct phases: initialisation, gathering, and filtering. Initial-
isation is the simplest and shortest phase, during which the constructor populates
the classifier’s state and sanitises memory in preparation for use. The constructor
takes a single argument, stream_no, which corresponds to the kernel’s execution
stream (see Section 2.8.2).

The gathering phase is responsible for extracting field values and performing field
comparisons from packet data in device memory, directed by a program stored in
GPU constant memory (see Section 2.6.2). The gather process is the only function
which directly interacts with packet data, which it accesses through a register-
based packet cache in order to reduce interaction with device memory, and thereby
conserve bandwidth (see Section 2.5). Gathering additionally relies heavily on
register-based state memory to track protocol information, prune redundant opera-
tions, and locate field offsets in packet data. The gather process iterates thirty-two
times, in order to evaluate 32 consecutive packets in each thread. This is done to
provide sufficient input data for the filtering phase.

The filtering phase is performed once all iterations of the gather process have com-
pleted, and uses the produced comparison results to evaluate filter predicates and
store filter results. This process is both encoded and performed similarly to the
predicate evaluation kernel used in GPF (see Section 4.4.3), but uses bit-based en-
coding in place of boolean values to encode results. Once filtering concludes, filter
and field results can be copied from device memory back to the host.
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Figure 6.1: Example layer structure corresponding to protocol structure of the il-
lustrated packets.

6.1.2 Layering Protocols

The gather process conceptualises packet records as an ordered stack of protocol
headers, where each header in a packet is associated with a separate stack layer.
Layers contains a set of one or more mutually exclusive protocols, such that a
particular packet can match no more than one protocol in a layer at a time. The
protocol used by a packet in a particular layer is determined in the previous layer.
Layers may be skipped by the thread only if no protocols in the layer match the
protocol specified by the previous layer. The process concludes when either all
layers have been processed, or the executing warp fails to identify a valid child
protocol matching a subsequent layer in any of its threads. A high-level illustration
of a hypothetical layer structure that matches the structure of five example packets
is shown in Figure 6.1. The second layer in this illustration, corresponding to the
IEEE 802.2 protocol, is ignored in all but one packet1.

As thread warps are essentially SIMD processing units, individual threads ter-
minating execution or skipping certain header layers does not actually prune pro-
cessing or significantly improve efficiency on its own; rather, threads are concep-
tually switched from an active state to an inactive state, cooperating with the re-
maining active threads in the warp to facilitate cache loads and storage operations.
As long as a single thread in the warp depends on a particular protocol or layer,
that protocol/layer will be evaluated (if not entirely processed) by all 32 threads,
regardless of their internal state. Pruning is possible, however, if all threads in a

1The IEEE 802.2 protocol is associated with the data-link layer of the OSI model, and is not part
of the TCP/IP suite.
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Figure 6.2: Illustration of Layer Processing Function

warp reach an inactive state, or if a protocol/layer is irrelevant to an entire warp.
Through a unanimous warp vote, threads can abort processing, or skip an irrelev-
ant protocol or layer, to speed up processing.

Layers are subdivided into one or more 12-byte cache segments. Segments are
loaded in to cache only once to extract all relevant fields defined for each protocol
in turn, helping to reduce redundant data loads by allowing a single cache load
to be used to process multiple protocols. Fields are located by adding a bit offset
(specified in the program) to the start offset of the cache segment, derived from the
current protocol offset held in state memory. Cache loads and field extractions are
handled by the packet cache, which is discussed in Section 6.5.

An illustration of the layer processing function applied to a hypothetical three-
layer filter program is provided in Figure 6.2. The first layer contains only the root
protocol (with leading bytes cropped) and a single relevant field, and thus requires
one single cache load. Layers two and three contain multiple potential protocols
and need more than one cache load to cover all included fields. The cache chunks
in a layer may overlap if a prior chunk fails to fully encapsulate a field, as in the
third layer of the graphic.

6.1.3 Warps and Synchronisation

In order to fully benefit from runtime layer and protocol pruning, the gather pro-
cess and other processes comprising the classification virtual machine avoid block
level synchronisation to ensure complete warp independence. Block level synchron-
isation constrains the processing speeds of all warps in a block to that of the slow-
est executing warp. With respect to the approach discussed, faster warps would
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Figure 6.3: Simplified illustration of the effects of synchronisation.

necessarily block at synchronisation points within the gather process, wasting any
potential time gained by pruning. In the worst case, fast warps would not be able
to skip a layer, cut an iteration short, or avoid a protocol unless all other warps
could as well. Where thread cooperation is necessary, data is passed through warp
vote and shuffle functions, as these provide implicit and future-proof warp-level
synchronisation [81] (see Section 2.7). A rough illustration of block- and warp-level
synchronisation, and the effects they can have on execution efficiency, is provided
in Figure 6.3.

The figure depicts the comparative efficiency of two blocks, each containing eight
warps (256 threads), executing eight gather iterations using block and warp level
synchronisation respectively. Warp-level synchronisation allows warps to execute
with greater independence and fluidly within a block, only synchronising (impli-
citly) on block termination. This improves the utilisation of multi-processor re-
sources, and provides finer thread granularity than explicit synchronisation at a
block level. This allows individual warps to benefit more frequently from pruning
operations, which is particularly powerful when requested filters or fields depend,
in part, on infrequently occurring application-specific protocols.

Pruning reduces the set of layers and protocols that are processed by a warp to only
those which are relevant to the 32 threads executing within it, thereby removing
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all redundant divergence operations from the warp’s execution path. It does not,
however, impact upon the necessary divergence which occurs when more than a
single protocol remains in a particular layer. As warps are SIMD units, this diver-
gence cannot be avoided through pruning and necessarily results in some level of
inefficiency. This divergence is managed in the architecture by merging similar ab-
stract operations where possible (such as the caching packet data) and minimising
divergent operations within potentially serialisable segments of code.

6.1.4 Assigning Packets to Threads

To avoid requiring block level synchronisation between the gather and filter pro-
cesses, both processes must operate on the same packet records in each warp. That
is, the comparison data used by the filter process to evaluate predicates must be
produced in the gather process by threads in the same warp; this ensures that the
filter process is not dependent on computation performed in other warp threads.
If this is not enforced, synchronisation would be required to prevent faster warps
from attempting to apply incomplete comparison results. This would in turn con-
strain all warps in a block to the performance of the slowest performing warp,
which is wasteful of resources. With this in mind, execution is organised such
that the ith iteration the gather process produces and stores the integer result that
the ith thread of the warp will operate on in the filter process. Since there are 32
threads in each warp and 32 bits in each integer processed by the filter process, the
gather process iterates 32 times.

Figure 6.4 provides a high level illustration of how packets are divided between
warps in a block of 128 threads, within both the gather and filter processes. In the
figure, each thread block processes 4,096 packets between four warps. Each warp
evaluates 32 packets per iteration, ultimately processing 1,024 contiguous packets
over 32 iterations. Each iteration produces a single 32-bit integer per warp (1 bit
per thread), and thus 32 iterations produces 32 integers worth of filter data. These
integers are processed in a single pass of the filter process, with the results of the
ith gather iteration providing the input for the ith warp thread in the filter process.
This avoids the need for block-level synchronisation, allowing warps to execute
independently of one another.
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Figure 6.4: Breakdown of packet processing order for a 512 thread block by warp
and process.

6.1.5 Execution Streams

The classification host thread executes the classification kernel using asynchron-
ous streams (see Section 2.8.2). The current implementation uses four streams by
default (as this provided the best balance of performance and memory utilisation),
but this is configurable at runtime. Each time the classifier is executed, it operates
on a new buffer of packet data within a dedicated stream. This allows data trans-
fer operations occurring in one stream to overlap with computation performed in
another, better utilising device resources.

Each stream is assigned its own sub-regions within global memory to read data
from and write data to. The execution stream number is passed as an argument to
the kernel so as to read and write data within the correct regions of global memory
(see Section 6.1.1). The execution stream is the only argument passed to the kernel;
all other configuration data is made accessible to the kernel through the constant
memory space (see Section 6.2). No other aspect of execution is affected by the
execution stream.
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6.2 Constant Memory

Constant memory is used to provide fast access to runtime constants derived dur-
ing the compilation process (see Section 7.3.2) and host-side initialisation.

The constant memory space stores the GPF+ program instructions, an integer
lookup table, global memory pointers, and several constant integers. Constant
memory is typically only written to twice during capture classification; it is ini-
tially populated prior to the first kernel invocation, and is slightly modified prior
to the final kernel invocation, adjusting the packet count to reflect a partially full
final buffer.

6.2.1 Program Memory

The GPF+ classifier maintains two program regions for the gather and filter pro-
cesses respectively, which remain unaltered for the entirety of capture classifica-
tion. The gather program is currently allocated 14 KB of constant memory stor-
age, while the filter program is allocated 2 KB. The gather program is provided
more storage space, as the filter program is usually comparatively small. The pro-
gram memory capacity provided is sufficient to encode hundreds of filters simul-
taneously.

Programs are accessed as a linear array of bytes, indexed by a register-based pro-
gram counter which changes dynamically during the course of execution. This
encoding as bytes differs from the encoding used in the GPF prototype (see Section
4.4.3), which used integers as basic elements to allow for integral values (required
for filter comparisons) to be encoded directly into the program instruction stream.
This approach was quite wasteful of the limited constant memory resources, as the
instruction codes which make up the majority of the program require far less than
a byte to successfully encode. Encoding instructions as bytes instead of integers
thus quadruples the instruction capacity per KB of program memory. As a con-
sequence, however, program memory can no longer properly contain the integral
values needed for runtime comparison operations. These values are now contained
within a separate lookup table of 32-bit integers, indexed by 8-bit values encoded
in the program byte stream.
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6.2.2 Value Lookup Table

The value lookup table is a 1 KB constant value lookup array with a limited ca-
pacity of up to 256 32-bit integral records. The limited capacity of the value table
is a consequence of using bytes for indexing, but could be worked around if this
proved necessary. For instance, the lookup table could be divided into n banks of
256 integers stored in an n×256 element integer array, and indexed using a pair of
bytes. Alternatively, the command width of program memory could be widened by
using 2-byte short values instead of 1-byte char values, at the cost of bloating the
program memory footprint by a factor of two.

This appears unnecessary in the general case, due to the Match Condition Redund-
ancy and Matching Set Confinement properties of filter sets [113]. The former
states that there is a high level of redundancy within filter comparison values,
while the latter states that the number of unique match conditions for any m-bit
field is significantly less than the 2m values it can represent. As the value lookup
table only contains unique records, its limited capacity is sufficient for potentially
hundreds of filters, although this is dependant on the level of redundancy within a
particular filter set.

6.2.3 Memory Pointers

Device memory pointers for packet data, results memory and working memory are
stored in constant memory, and are globally accessible to all functions within the
kernel. All pointers use an integer type to provide optimum read bandwidth, and
are accessed simultaneously by all participating threads to avoid read serialisation
(see Section 6.4).

6.2.4 Runtime Constants

Runtime constants are stored as integers in GPU constant memory in order to min-
imise latency. Constants are read simultaneously by all threads, and thus avoid
additional latency due to access serialization (see Section 2.6.2). These constant
values cannot be altered between individual streams when employing asynchron-
ous execution, but may be adjusted between kernel invocations on the host. This is
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Table 6.1: Table of Kernel Runtime Constants
Group Constants

Packet
Packet Count
Layer Count
Packet Size

Working

Working per Stream
Working per Block
Working per Warp
Values per Packet

Result

Filter Memory per Stream
Field Memory per Stream
Filter Results per Packet
Field Results per Packet

Filter Array Size
Field Array Size

only done prior to the final invocation of the classifier in order to change the packet
count to reflect the number of packets in the final buffer. Runtime constants are
primarily used as control variables in loops, and in combination with state memory
to read from and write to the correct offsets in global memory.

The classification kernel relies on thirteen specific constants, which are listed in
Table 6.1 and described below. While some of these constants could be derived at
runtime, it is more efficient to pre-calculate frequently used transformations and
avoid unnecessary processing overhead.

Packet Count The number of packets processed in each stream.

Layer Count The number of distinct protocol layers included in the program.

Packet Size The cropped size (in bytes) of each packet record in device memory.

Working per Stream The allocated working memory region size (see Section 6.4.2)
per execution stream, in bytes.

Working per Block/Warp The amount of working memory used per thread
block/warp, in bytes.

Values per Packet The number of distinct working values stored per packet.

Filter/Field Memory per Stream The allocated filter/field memory region sizes
per execution stream, in bytes.
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Filter/Field Results per Packet The number of distinct filter/field results stored
per packet.

Filter/Field Array Size The total memory required to store a single result for all
packets in a stream.

6.3 State Memory

State memory is composed of globally accessible internal registers that store dy-
namic, contextual information that guides the execution process. State memory
is comprised of fifteen distinct values, which are tightly packed into five registers.
State memory variables are maintained within vector types, which allow multiple
smaller values (such as short and char types) to be stored in a single 32-bit
register. Without vectorised state variables, each 8-bit and 16-bit state variable
would consume a separate 32-bit register, both wasting memory in the register file
and increasing register pressure. The increased register pressure alone would pre-
vent the kernel from ever achieving full occupancy (see Section 2.6.1), and would
therefore significantly impact performance by not being able to utilise a device’s
full processing capacity [81].

While the use of vector types reduces register requirements of state memory by
roughly two thirds, it does have a minor associated cost; because multiple vari-
ables share a single register, the likelihood of register read-after-write conflicts
is increased (see Section 2.6.1). This can be designed against to an extent by spa-
cing out multiple consecutive operations to components of a single vector, providing
time for the register to be written before attempting to access it again. To main-
tain minimal register utilisation, signed and unsigned vector types are also used to
store loop control variables and other sufficiently small runtime variables. These
are maintained within a particular scope, rather than state memory, so that the
registers they utilise may be reallocated for other operations on scope closure.

An exhaustive list of the defined global state memory variables, and how they are
stored across vectors, is provided in Table 6.2. A short summary of each of these
variables follows:

Packet Index The index of the current packet being processed by the thread, re-
lative to the beginning of the kernel’s data stream. Each thread is allocated
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State Variable Data Type Sub-Variables Applicable To
Packet Index int – Gather

Offsets short2
Program Offset Gather & Filter
Protocol Offset Gather

Protocol State uchar4

Active Gather
Current Gather

Next Gather
Length Gather

Thread State uchar4

Warp Gather
Stream Gather & Filter

Iteration Gather
Alignment Cache

Cache State uchar4

Reciprocal A Cache
Reciprocal B Cache
Reciprocal C Cache
Cache Lane Cache

Table 6.2: Summary of State Variables

32 non-contiguous packets to process (one packet per iteration of the gather
process, with a 32 packet stride between iterations) and thus this value incre-
ments a total of 32 times in the thread’s lifetime.

Program Offset The current command offset from the start of either the gather
of filter operation’s program memory, depending on the current execution con-
text. The program offset is incremented frequently (although not after every
operation), but cannot currently be manually adjusted.

Data Offset The number of bytes from the start of the packet record to the start of
the current protocol layer. The data offset is incremented by the length of the
current protocol just before switching to the next protocol at the beginning of
each new layer. It is reset to zero at the beginning of each new iteration of the
gather process.

Active Protocol The unique numerical ID of the protocol that the thread warp
is currently processing from program memory. This value is set before pro-
cessing fields for a particular protocol, and thus changes regularly as each
layer tests each of its applicable protocols.

Current Protocol The unique numerical ID of the protocol associated with the
current layer of the packet being processed. Each packet can only be asso-
ciated with a single protocol ID per layer, which is used to determine if an
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operation applies to the current thread or not by comparing it to the ID of the
current active protocol. The current protocol uses the reserved ID of 0xFF to
indicate that a thread has reached the end of processing, which prevents the
thread from matching any subsequent active protocols.

Next Protocol The unique numerical ID of the next expected protocol after the
current protocol. This value is initialised to 0xFF at the beginning of each
iteration of the gather process, but may be set by a successful switch state-
ment during the course of evaluating the layer. This effectively terminates a
thread if no switches relevant to the current protocol succeed before the end
of the layer is reached.

Protocol Length The length of the current protocol in bytes, which is initialised
to the appropriate protocol’s default value at the onset of a layer. This state
variable is unique, in that it is the only state variable that can be written to
directly or via an integral expression from high-level filter code during the
course of evaluating a layer. The protocol length is used to update the data
offset on conclusion of a layer, which allows layers to support protocols of
different and variable lengths.

Warp The index of the warp that contains the current thread within the execut-
ing thread block. This value is rarely used for tasks other than reading and
writing working memory, but is used frequently enough over the course of a
threads life-time to benefit from reserved storage.

Stream The stream index of the kernel invocation that contains the thread. The
stream index is the only variable not passed through or derived from con-
stant memory (as all streams share the same constant memory space), and is
instead passed as the only argument of the kernel function. The stream index
is used by both the gather and filter functions of the classifier to determine
which areas of memory to read and write to, as each stream is provided its
own working space and results storage.

Gather Iteration The current gather iteration, where each iteration corresponds
to a separate and distinct packet processed by the thread. This value is incre-
mented on completion of each iteration of the gather process, until it reaches
a value of 32. At this point, the gather process terminates and the filtering
process begins.
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Alignment The byte alignment of the start offset of the currently loaded cache
data, as a 2-bit (0-3) offset from a 4-byte alignment boundary. This value
is used to handle the disparity between the 1-byte alignment of headers in
packet data, and the 4-byte alignment requirement imposed when reading
data as integral values from global memory. Its use is discussed in Section
6.5.3.

Cache Reciprocal A/B/C The reciprocal thread indices for each of the three re-
gister shuffle operations used by the packet cache. These operations are per-
formed after a 16-byte coalesced read to get the correct packet data to the
correct thread. Due to their compact size, these values are pre-calculated
and stored once in the threads constructor, to avoid repeating all three cal-
culations hundreds of times during the course of 32 iterations of the gather
process.

Cache Lane The thread’s prescribed lane in the cache unshuffling process. It is
required to both retrieve the right packet data from global memory, and to
initially calculate the three cache transforms discussed above. As with the
cache reciprocals, the cache lane state variable could be derived at runtime,
but was included to avoid repeated re-calculation.

6.4 Global Memory

Global memory is housed in device DRAM and contains packet data, results memory,
and working memory. All global memory regions are allocated once during system
initialisation, and subsequently reused across multiple kernel invocations. Global
memory regions are therefore fully accessible to all streams, and accessing the cor-
rect offsets in device memory spaces therefore requires support from constant and
state memory. Global memory requirements are determined during system ini-
tialisation from setup parameters and compiled program attributes, and are not
affected by the composition of individual captures.

6.4.1 Packet Data

Packet data is passed to the classification host thread from the pre-processor in
page-locked, write-combined buffers (see Section 2.8.1), which are copied asyn-
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chronously to the device in an assigned stream. The kernel is launched asynchron-
ously in that stream immediately thereafter, and begins executing on the device
as soon as the buffer copy is completed. Packet data is contained as an array of
integers in device memory, and is accessed through the packet cache. The packet
cache handles both the loading of raw data from global memory, and the extraction
of fields from that data for the classification process. The packet cache is discussed
in detail in Section 6.5.

6.4.2 Working Memory

Working memory is a region in global memory that temporarily stores bit-based
comparison results generated during the gather process. Like other regions in
global memory, working memory is partitioned evenly between participating streams.
Each stream partition is itself sub-divided into a set of integer based result arrays,
where each array stores the results of a particular comparison or predicate for
every packet contained within the stream. These results are not returned to the
host, and are instead used as elements in the filter process.

Working memory is the only region of global memory that is accessed from both the
gather process (which operates on a single packet per thread) and the filter process
(which operates on 32 packets per thread). The gather process issues the majority
of working memory write transactions, but does not read data from it. Prior to
writing to working memory in the gather process, all comparison results are collec-
ted as a 32-bit integer in the first thread of the warp; this thread alone writes the
comparison results to working memory. The filter process reads this comparison
data, using the contained records to produce filter results and additional working
results, the latter of which may then be used by a subsequent filter.

Working memory elements are assigned numeric identifiers at compile time, which
correlate to their array’s section of working memory. Working results are organised
in device memory by warp to avoid block level synchronisation between the gather
and filter processes (see Section 6.1.3). Figure 6.5 illustrates this layout when n

working variables are defined.

The correct read and write offsets for the gather and filter process are derived
using values in constant and state memory, as shown in Listing 11. The offset of
the current warp is determined first, and is subsequently used to calculate both
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Figure 6.5: Layout of working memory by warp for n working variables.

Listing 11 Deriving the gather and filter offsets for a warp in working memory.

1 int warpOffset = Constant.WorkingPerStream * State.Stream + Constant.
WorkingPerBlock * blockIdx.x + Constant.WorkingPerWarp * State.Warp;

2
3 int gatherOffset = warpOffset + workingIndex * 32 + State.Iteration;
4 int filterOffset = warpOffset + workingIndex * 32 + threadIdx.x & 31;

gather and filter offsets. The gather process uses this warp offset to transform the
working index values (supplied by the GPF+ program) into an offset in working
memory. This write is issued from the first thread in the warp, and occurs once per
warp per iteration.

The filter process reads the integer elements stored by the gather process, with
each thread accessing an element produced in a different gather iteration. This
pattern coalesces perfectly within the warp. The filter process additionally uses
this offset to write new elements, which are created to temporarily house sub-
predicates (such as those needed to handle parenthesis) needed by subsequent fil-
ters. Further details on how working memory is applied within the gather and
filter processes are provided in Section 6.7 and 6.8 respectively.

6.4.3 Results Memory

The results of operations which are intended to be transferred back to the host
process are stored in a global memory region referred to as results memory. Results
memory currently has two separate and distinct banks that store field values and
filter results. Each bank is sized appropriately at compile time, and shared equally
between all executing streams. Field values are stored as 32-bit integers, while



6.4. GLOBAL MEMORY 142

Figure 6.6: Memory layout for n filter or field results in a stream containing m
packets.

Listing 12 Deriving the gather and filter offsets for a warp in results memory.

1 streamOffset = Constant.ResultMemoryPerStream * State.Stream;
2 arrayOffset = Constant.ResultArraySize * resultIndex;
3
4 int filterOffset = streamOffset + arrayOffset + blockDim.x * blockIdx.x +

threadIdx.x;
5 int fieldOffset = streamOffset + arrayOffset + State.PacketIndex;

filter results are stored as 1-bit boolean results encoded within integers. Field
values are currently only writeable by the gather process, and can only be read on
the host.

Outputs are stored in their respective banks within equally sized contiguous arrays
(one for each filter or field extraction operation), organised in packet index order.
For instance, if a program defines n separate filters and each stream processes m

packets at a time, then the portion of the filter memory bank accessible to a given
stream is equally divided into n adjacent arrays of m filter results. The layout
of field and filter records is illustrated in Figure 6.6. The psuedocode provided in
Listing 12 shows the offset calculations necessary to determine the stream offset in
device memory, and the result array offset within the stream. The Result prefix
used in psuedocode is a stand-in for either Field or Filter prefixes, depending
on the context. These offsets are used by the gather process to locate field results,
and by the filter process to locate filter results.

This pattern coalesces fully on writes from both the gather and filter processes,
which helps to reduce bandwidth utilisation and latency. Once a particular stream
has completed, the relevant portion of both the field and filter banks are copied
back to a buffer on the host to be stored. The buffer is passed to an output writer
thread using a 0MQ channel, which appends each result array contained in the
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Figure 6.7: Writing four filter / field results from a single buffer to multiple result
files.

buffer to a dedicated file. Figure 6.7 illustrates this for four separate filters or
extracted fields.

6.5 Packet Cache

High performance classification requires efficient access to packet data as a neces-
sary prerequisite, as all useful classification results and processing outputs gener-
ated by the classifier depend on reading and evaluating at least one fragment of
packet data. As packet records are relatively large, and are distributed in memory
such that they interfere with coalescing [66], accessing packet data directly without
optimisation introduces a bandwidth bottleneck that could severely compromises
kernel performance. The classifier is supported by a packet cache to mitigate this
bottleneck, reducing redundant device memory accesses, and improving bandwidth
efficiency on those loads that are required.

The packet cache is implemented as a set of state-based utility functions within
the classification object executed by the kernel. The packet cache uses a 16-byte in-
teger array in register memory to temporarily store chunks of header data, thereby
helping to reduce dependency on global memory reads. The packet cache functions
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include a cache load function which fills the cache array, and a field extraction
function which extracts field values from the cache array. These two functions are
supported by several state memory variables, and are guided by a single compiler-
generated instruction in program memory.

6.5.1 Approach

The cache load function, by allowing threads to coalesce reads more often, reduces
the performance impact of reading chunks of packet data from GPU device memory.
The implementation of this function uses groups of four cooperating threads to load
16 byte cache chunks from four consecutive packets, one at a time. On completion,
the first thread’s cache contains the first integer of each packet chunk, the second
thread’s cache contains the second integer, and so on. As threads read from adja-
cent indexes, these reads coalesce, improving bandwidth efficiency [18, 22]. These
integers are then redistributed (or transposed) between group threads using warp
shuffle operations [22], such that the first thread cache contains all 16 bytes of the
first packet, the second thread contains all 16 bytes of the second packet, etc. Lar-
ger caches would promote higher coalescing at the expense of additional on-chip
register storage and warp shuffle overhead to store and organise results.

An illustration of the derived cache load process is provided in Figure 6.8, which
charts the four global memory copies and three shuffle operations performed to
read and reshuffle packet records. Figure 6.9 shows the performance of this ap-
proach on a GTX Titan when applied to fully caching 128 byte records, in compar-
ison to caching records using a direct and fully uncoalesced approach. Performance
was measured using Nvidia Nsight 4.2 for Visual Studio 2012, with each configur-
ation being timed ten times and averaged. All tests utilised a 16 byte cache in
register memory, sufficient to hold four integers at a time.

These results show significant improvement in both L2 and RO cache performance,
but lower overall performance when using texture objects or CUDA arrays. The
implementation of the load process uses the Read Only cache to load packet data,
as it performed particularly well in initial tests, achieving a maximum throughput
over 30% higher than any other direct or shuffled read configuration.

The remainder of this section discusses the caching process in more detail.
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Figure 6.8: Illustration of the cache load process for a four-thread shuffle group.

Figure 6.9: Average read throughput achieved using direct and shuffled access.
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Listing 13 Initialising runtime-constant cache state variables.

1 State.CacheLane = threadIdx.x & 0x3;
2
3 State.ReciprocalA = (5 - State.CacheLane) & 0x3;
4 State.ReciprocalB = 3 - State.CacheLane;
5 State.ReciprocalC = (2 + State.CacheLane) & 0x3;

Table 6.3: Possible Reciprocal values
Cache Lane 0 1 2 3
Reciprocal A 1 0 3 2
Reciprocal B 3 2 1 0
Reciprocal C 2 3 0 1

6.5.2 Cache State Variables

The packet cache has 5 dedicated state memory variables that it uses to read and
extract data, of which four remain constant with respect to a particular thread (see
Table 6.2). These state variables reside in the same vectorised register, and are set
in the constructor as shown in Listing 13. The fifth variable, Alignment, changes
on each cache load; this state variable is more complex, and is discussed separately
in Section 6.5.4.

The CacheLane state variable can only take on one of four values, as there are
only four possible values that each reciprocal value can hold. These are summar-
ised in Table 6.3. For each operation in turn, the reciprocal values indicate to the
thread which cache array index it should exchange, as well as the cache lane it
should exchange with. For example, let Cx(y) be the integer at index y in cache
lane x. ReciprocalA is used during the first shuffle operation to swap the value
in C0(1) with C1(0), and C2(3) with C3(2), corresponding to Shuffle A in Figure 6.8.
ReciprocalB and ReciprocalC follow the same pattern, together redistributing
all integers to the correct location within their respective thread’s cache.

6.5.3 Value Alignment

Despite loading and storing 16 bytes of data during each load, only 12 bytes of
the retrieved data is actually usable. The remaining 4 bytes provide necessary
slack space to handle cache loads that do not start on a 4-byte boundary. The
need for this slack space arises due to protocol headers being located at unknown
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Figure 6.10: Effect of chunk alignment on byte positioning within cache registers.

offsets and aligned on byte rather than integer (4-byte) boundaries. As a result,
protocol header offsets are not guaranteed to coincide with integer boundaries, an
may potentially start on any byte offset. This complicates matters, as integer loads
will not work if they do not lie on a 4-byte boundaries [87].

As a result of this difference in alignment, when a cache chunk is loaded there is a
distinct possibility of acquiring and storing up to three leading bytes, which wastes
up to 75 % of a cache integer. Figure 6.10 shows the effect of all possible alignments
on the storage of a 12-byte cache chunk within cache registers, illustrating why
four integers cannot store 16 bytes of packet data when alignment might vary
between threads.

Alignment is maintained as an attribute of the Thread State vector in state memory
(see Section 6.3) and is used to correctly locate each field’s byte offset in cache.
Alignment is calculated at the start of the cache load through a bitwise modulus
(see Section 6.5.2), but is only used during field extraction (see Section 6.5.5).

6.5.4 Filling Cache

The cache load function is called at the start of each new layer, populating the
thread’s cache with a 16-byte segment of packet data. Psuedocode for the function
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Listing 14 Cache load function psuedocode.

1 int ChunkOffset = GatherProgram[ProgramOffset++];
2 int Reciprocals[] = { State.ReciprocalA, State.ReciprocalB, State.

ReciprocalC };
3
4 //find byte offset and alignment
5 int byteOffset = State.ProtocolOffset + ChunkOffset;
6 int intOffset = byteOffset >> 2;
7 State.Alignment = byteOffset & 3;
8
9 //get pointer to cache chunk

10 int startPacket = State.Stream * State.PacketCount + State.PacketIndex & 0
xFFFFFFFC;

11 int* startOffset = Constant.PacketPtr + startPacket * Constant.PacketSize;
12
13 //load chunk cooperatively
14 for (int k = 0; k < 4; k++) {
15 int currOffset = __shfl(intOffset, k, 4) + State.CacheLane;
16 cache[k] = __ldg(startOffset + Constant.PacketSize * k + currOffset);
17 }
18 //shuffle caches and reverse byte order
19 for (int k = 0; k < 3; k++) {
20 int index = Reciprocals[k];
21 int working = __byte_perm(cache[index], 0, 0x0123);
22 cache[index] = __shfl(working, index, 4);
23 }
24 //reverse byte order on stationary indexes
25 cache[State.CacheLane] = __byte_perm(cache[State.CacheLane], 0, 0x0123);

is provided in Listing 14, which encodes the process illustrated in Figure 6.8.

The first step of the process involves deriving both the integer offset of the thread’s
associated cache chunk, and an integer pointer to the start of the first cache chunk
in the shuffle group. To find the integer offset of the thread’s associated cache
chunk, the byte offset of the current protocol header (read from state memory)
is added to the protocol-local byte-offset of the cache chunk (read from program
memory).

While the chunk offset is constant for all packets, the byte offset of the header may
vary between cooperating threads based on the results of prior layers. Note that
intOffset points to the start of the integer in which the first byte of the cache
chunk is contained, and not the byte itself. Alignment stores the byte index of the
first byte of the cache in the integer at intOffset, and is a necessary component
of the field extraction process (see Section 6.5.3 and Section 6.5.5). The thread-
specific value intOffset is used to locate the offset of each cache chunk in global
memory. These offsets are represented in Figure 6.8 by the variables n, m, p and q.
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At the beginning of iteration k ∈ [0, 4) of the loading loop, the offset derived in
the kth thread is broadcast to all participating thread lanes (via a register shuffle)
so that each thread knows the exact offset of the kth packet’s cache chunk. Each
thread then adds its own lane offset to the base offset received, as the kth thread
lane is responsible for reading the kth integer of all chunks. The load operation
itself uses the __ldg load function to take advantage of the performance benefits
of Read-Only cache (see Section 2.5.4).

Once the loading process completes, each packet cache chunk is evenly distributed
across all four participating threads. These values are redistributed in the final
loop using the register shuffle intrinsic function and the reciprocal indexes stored
in state memory (see Section 6.5.2). Packet data is stored in big-endian network or-
der (most significant byte first), while Windows PCs and x86-based processors use
little-endian encoding (least significant byte first) [58]. Due to this, an additional
step is needed to swap the byte-order of integers in the cache on Windows PCs so
that they correspond to the correct values. This is facilitated by the hardware ac-
celerated __byte_perm intrinsic function. This step could be omitted if compiled
for big-endian machines.

Once this process has completed, the stored cache data remains accessible until
the next time the load function is called. During this period, multiple field values
may be extracted from the cache by the classifier for any protocol in the layer.

6.5.5 Field Extraction

The purpose of field extraction is to locate specific n-bit binary string from the 12
bytes of valid cache data obtained during the loading process (where n ≤ 32) and
return it as a 32-bit integral value. While fields larger than 32 bits (such as a 128-
bit IPv6 address) cannot be extracted in a single operation, it is possible to handle
them by subdividing them into multiple shorter bit strings and processing those
components individually. Each n-bit string will therefore be contained over either
one or two integers, depending on whether the field crosses a 32-bit boundary in
cache memory or not. Fields which fall partially outside of cache must be handled
within a different cache load. This is illustrated in Figure 6.11.

The extraction process takes two inputs – BitOffset, and BitLength – which
describe the field’s position within the 12 byte cache. The Alignment state vari-
able is used to adjust the bit offset to the correct position in the first register of
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Figure 6.11: Example valid and invalid reads from cache, assuming 32-bit fields.

Listing 15 Psuedocode for the field extraction process.

1 int BitOffset = GatherProgram[ProgramOffset++] + State.Alignment * 8;
2 int BitLength = GatherProgram[ProgramOffset++];
3 int IntOffset = BitOffset >> 5;
4
5 // mask leading bits
6 uint value = cache[IntOffset] & (0xFFFFFFFF >> (BitOffset & 31));
7
8 //check containment
9 if ((BitOffset & 31) + BitLength < 33) {

10 value = value >> (32 - (BitOffset & 31) - BitLength);
11 }
12 // merge with trimmed trailing integer
13 else {
14 int remaining = (BitOffset + BitLength) & 31;
15 value = (value << remaining) + (cache[IntOffset + 1] >> (32 - remaining)

);
16 }
17 return value;

cache memory. These values are then used to extract the field value into a register,
value, which is ultimately returned. This is done through bit shifts and bit-wise
conjunction operators rather than division and modulo operators to improve in-
struction throughput (see Section 2.8.4). Basic C psuedocode for the function is
shown in Listing 15.

The operation begins by masking the leading bits (if any) from the first relevant in-
teger, storing the result in value. The process then diverges depending on whether
the contained field spans one or multiple integers. If the offset of the last bit of the
field is also contained in the first integer, the trailing bits are shifted off of value
and it is returned to the calling process. If the field overlaps two integers, however,
the bits from the second integer need to be concatenated to value. The bits in
value are shifted to provide room for the remaining bits and, after shifting off the
trailing bits from the second integer, merged with value through simple addition.
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At this point the field value is properly extracted, and can be returned to the calling
process.

6.6 Gather Process

This section describes the gather process, so named because it is responsible for
navigating each protocol header layer of each raw packet to extract and store all
relevant information in a more efficient format. All subsequent host and device-
side work operates on fully coalescing bit strings and pre-filtered integral arrays
generated by the gather process.

The gather process executes as a hierarchy of nested loops, controlled by nested
instructions contained in program memory, and supported by the packet cache and
state memory. The gather process is composed of two dedicated nested functions,
referred to as the layer and field processing functions respectively. These functions
are outlined in Figure 6.12. The outer layer processing function (described this
section) manages the switching of stack layers, prepares the thread cache and state
memory for data gathering, and prunes redundant computation from individual
warps. The inner field processing function (described in Section 6.7) is responsible
for interacting with packet data, and stores filter comparisons, field data, and the
results of expression evaluations in working and results memory (see Section 6.4).

The remainder of this section focusses on the layer processing function. Field pro-
cessing is discussed separately in the following section.

6.6.1 Layer Processing Function

The layer processing function is called once for each iteration of the gather pro-
cess, and manages all filtering and data gathering operations. It is responsible for
navigating raw packet records, managing layer switching and runtime pruning,
pre-loading the packet cache with raw packet data, and dispatching the field pro-
cessing function. This is achieved through a hierarchy of three nested loops which
divide processing into simple groupings.
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Figure 6.12: Abstract representation / psuedocode of the layer processing function.

1. The outer-most loop manages the transition between different protocols in
the packet header. This loop may skip iterations if the warp contains no ap-
plicable threads, and may terminate if all threads in a warp reach a finalised
state.

2. The central loop fills the packet cache in preparation for filtering. This process
was discussed previously in Section 6.5.

3. The inner-most loop dispatches processing of warp-applicable, protocol-specific
sets of fields that overlap with the currently loaded cache. The loop may skip
protocol sets if a warp contains no applicable threads.

Listing 16 describes the structure of the relevant portion of the gather program
in Extended Bachus-Naur Form (EBNF) [117]; fields are discussed separately in
Section 6.7. A complete listing for the full gather process can be found in Appendix
A.2. The remainder of this subsection will discuss these loops from outer-most to
inner-most, detailing important functionality and tying it to commands embedded
in the EBNF program.

6.6.2 Layer Switching

The outer loop’s primary function is to manage the transition between protocols
and to facilitate layer level pruning. At the start of each new layer, the gather
process evaluates the layer header to determine the relevancy of the layer. The
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Listing 16 Partial EBNF describing the encoding of the gather program.

1 gather program = { stack layer } ;
2
3 (* Layer *)
4 stack layer = layer header , cache chunk count , { cache chunk } ;
5 layer header = protocol count , { layer protocol } , skip offset ;
6 layer protocol = protocol id , protocol length ;
7
8 (* Cache *)
9 cache chunk = local offset , protocol count , { protocol set } ;

10
11 (* Protocol Set *)
12 protocol set = protocol id , skip offset , field count , { field set };
13
14 field set = ... ;
15
16 protocol count = number ;
17 protocol id = number ;
18 protocol length = number ;
19 skip offset = number ;
20 cache set count = number ;
21 local offset = number ;
22 protocol count = number ;
23 field count = number ;
24
25 number = digit , { digit } ;
26 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
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layer header contains a simple list of protocol definitions comprising the protocol’s
unique numeric identifier and its default length. Each thread iterates over these
definitions, comparing the protocol identifier to the NextProtocol register in
state memory to determine if that protocol is relevant to the threads associated
packet. The NextProtocol register is initialised to the root protocol’s identifier at
the start of each iteration of the gather process (or alternatively, each packet), and
is updated each time the next protocol in the packet header is identified.

If a match is found, the CurrentProtocol register is set to the value in the
NextProtocol register, and the DataOffset register is incremented by the value
stored in the ProtocolLength register. This associates the thread with both the
layer and the protocol, and updates the thread’s local DataOffset to point to
the beginning of the current header. The ProtocolLength register is then re-
initialised to the default length specified in the definition, and the NextProtocol
register is reset to a null value.

Once all protocol definitions have been reviewed, threads perform a warp vote to
determine if the layer can be skipped. If all threads fail to find a matching pro-
tocol definition, the warp vote succeeds and the layer is skipped. Specifically,
the ProgramOffset is incremented past the current layer using the skip offset
provided in the gather program, and the next layer iteration is immediately star-
ted. If the vote fails, at least one thread in the warp is active, and the process
begins iterating over each of the cache chunks contained within the layer.

The outer loop performs one additional warp vote at the end of each iteration,
which passes if all threads have a null value stored in the NextProtocol register.
This only occurs if all threads in the warp fail to identify a subsequent protocol
during the course of layer evaluation, and thus a passing warp vote indicates the
warp is finalised (no threads in the executing warp have relevant operations left
to perform). If the warp is finalised, the outer loop exits and completes the process
early, effectively pruning any remaining layers.

6.6.3 Caching and Protocol Set Dispatch

The central loop refills the packet cache, which acts as the data source for all pro-
tocol set processing functions. The cache takes a single argument, specifying the
byte offset of the first integer in the cache load, from the start of the packet record.
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This byte offset is found by summing the DataOffset register (the byte offset to
the start of the layer) to the local offset specified in program memory. The de-
rived byte index indicates the thread local start position of the cache chunk in the
thread’s current packet record, which is passed as an argument to the cache load
function (see Section 6.5).

Once the cache has been populated with the data specified in the current cache
chunk, the inner-most loop begins iterating through each protocol set associated
with the cache chunk, determining which sets must be evaluated and which sets
can be ignored. A protocol set is effectively the set of all operations targeting a
specific protocol within a specific cache chunk. This grouping allows the process to
skip all operations targeting a specific protocol through a single warp vote. Without
this grouping, pruning protocol redundancies would require a separate warp vote
in each individual field evaluation, which would become expensive in larger filter
programs.

The warp vote to skip a protocol set is performed at the start of each iteration
of the inner-most loop. The vote identifies redundant protocol sets by comparing
the protocol identifier associated with the set to the CurrentProtocol register in
state memory. A protocol set is considered redundant and is skipped if the warp
vote shows that no threads in the warp are associated with the same protocol as
the protocol set. If the protocol set is relevant however, the ActiveProtocol state
register is set to the value of the protocol’s unique identifier, and the protocol’s fields
are processed by the inner field processing function. This is discussed in the next
section.

6.7 Field Processing

The field processing function executes within the layer processing function of the
gather process. This function extracts and derives field and filter results for a
particular protocol within a specific cache chunk, updating the ProtocolLength

or NextProtocol registers in state memory when necessary. Figure 6.12 provides
an overview of the process. It is composed of an outer field processing loop with two
consecutive and optional inner loops that handle filter comparisons and expression
evaluations respectively. Listing 17 shows the EBNF for the relevant portion of the
gather program. This section explores the outer field processing loop, inner filter
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Listing 17 Partial EBNF describing the encoding of the gather program.

1 field set = field offset , field length , store index , filter count, {
filter comparison } , expressions ;

2
3 filter comparison = comparison operator , lookup index , switch id ,

working index ;
4
5 field offset = number ;
6 field length = number ;
7 store index = number ;
8 filter count = number ;
9 expressions = ... ;

10
11 comparison operator = "0" | "1" | "2" | "3" | "4" | "5" ;
12 lookup index = number ;
13 switch id = number ;
14 working index = number ;
15
16 number = digit , { digit } ;
17 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

comparison loop, and expression handling. Expressions are discussed in Section
6.7.3.

6.7.1 Extracting Fields

The first step performed during the processing of each field involves extracting
the value of the field from the cache and storing it in a temporary local register
(referred to as the value register for simplicity). Field extraction is performed by
the cache read function, as described in Section 6.5.5. This function takes the field
offset and field length supplied by the gather program as inputs. Once the field has
been extracted, it may be stored in result memory (see Section 6.4.3) at the index
specified by the store index field in program memory. This occurs if the index is
not equal to the reserved value of 0xFF. If a valid index is specified, threads write
their extracted field values to consecutive (and thus fully coalescing) indexes of the
field’s result array.

6.7.2 Field Comparisons

The next phase of the function is optional: it iterates through and performs every
filter comparison targeting the field, storing the results as a bit string. The filter
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Table 6.4: Mapping of integer identifiers to comparison operators.
Comparison Operator == != < > <= >=

Integer Identifier 0 1 2 3 4 5

Figure 6.13: Converting a warp-wide comparison result into a single 32-bit integer.

comparison involves comparing the extracted field value to a 32-bit value stored in
the lookup table (see Section 6.2.2), and using one of the six supported comparison
operators. These operators are represented by the integer identifiers in program
code (see Table 6.4). Each filter comparison is performed in conjunction with a
protocol identifier test, which filters out results from threads that are not associ-
ated with the active protocol. The produced boolean variable may be stored as in
working memory (see Section 6.4.2) for the filter process if filter comparisons are
defined, or used to set the NextProtocol register in state memory if the field is
the target of a switch statement.

Comparisons are stored if the working index supplied in the gather program is not
equal to 0xFF. If a comparison is to be stored, the boolean result of the comparison
is immediately compressed from a collection of 32 bytes into a single 32-bit integer
value using a warp ballot (see Section 2.7.1). The ballot produces an identical in-
teger in all 32 threads, where each bit of the integer corresponds to the comparison
result of the corresponding thread in the warp. This format is eight times more
compact and bandwidth efficient than a boolean array used in GPF, and through
bitwise operations can evaluate 32 times more results per operation in the filter
process. Once the ballot function has completed, the first thread in the warp writes
the resultant integer to working memory (see Section 6.4.2). If a comparison is
used in a switch statement and results in a true value, the associate protocol iden-
tifier is written to the thread’s NextProtocol register to facilitate layer switching
(see Section 6.6.2).

The remainder of the function is dedicated to evaluating integral expressions,
which are used to calculate protocol lengths from header field data.
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Figure 6.14: Example of expression encoding.

6.7.3 Protocol Length Processing

The final phase of the field function processes integer based expressions, which
are currently exclusively used to transform and store the protocol length fields
contained in header data; this information is required by the outer layer function
when switching from a variable length protocol to a child protocol.

Protocol length fields are typically specified as the number of bytes or 4-byte words
in the header and thus only require a multiplication process to evaluate. This
could be achieved quite simply: multiply the field by a program encoded multiplier
greater than or equal to zero, where zero indicates no expression, for instance. This
would be achieved at the expense of a generic approach; the function would not be
generalisable to arbitrary expressions comprising addition, subtraction, multiplic-
ation and parenthesis operators. With these operators it would be possible to per-
form numerical calculations of greater complexity during the course of execution,
which could be used to transform field values, local variables and state memory
registers programmatically. This is not within the scope of this implementation
but is a possibility for future work.

As a compromise, the implementation provides the architectural foundation for
processing varied numeric expressions, but explicitly supports only addition, mul-
tiplication and parenthesis operators. The majority of this section discusses this
limited implementation; the following section discusses possible approaches to in-
corporating subtraction and division and extending expression evaluation function-
ality. EBNF showing the program syntax for expression evaluation is provided in
Figure 18, and may also be found in Appendix A.3. If a field defines no expressions,
expression evaluation is skipped by setting the field’s expression count to zero.
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Listing 18 Partial EBNF describing the encoding of expressions.

1 expression = expression count , { sum } ;
2 sum = product count , { product } , value ;
3 product = value count , { value } ;
4 value = type id , index ;
5
6 expression count = number ;
7 product count = number ;
8 store index = number ;
9 value count = number ;

10 read type = number ;
11 read index = number ;
12 store type = "0" | "1" ;
13
14 number = digit , { digit } ;
15 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

Expressions are evaluated within a three-tier nested loop; the outer loop iterates
through each individual expression, while the inner loops process additive and
multiplicative processes, respectively, within each expression. For simplicity these
loops will be referred to, from outer-most to inner-most, as the expression, sum and
product loops. These loops process a series of embedded values, which are encoded
as two tuples comprising a source identifier and a read index. The source identifier
indicates the region of memory where the data is stored, and currently has two
defined values that point to the lookup value table in constant memory, and the
ProtocolLength register in state memory.

The inner-most product loop processes a section of program memory composed of
a value count, followed by a series of one or more value tuples. Starting with a
local register m containing the multiplicative identity (m = 1), the product loop
uses the value count to iterate over each value pair, loading an integer from the
indicated location, multiplying the retrieved integer with the value contained in
m, and finally storing the result back in m. Once the loop completes, m contains
the product of all referenced values in the product section. If an expression does
not employ multiplication, any contained product sections will reference exactly
one value tuple.

The sum loop iterates through a sequence of one or more product sets, accumulat-
ing the results of each set in a local register s initialised to the additive identity
(s = 0). By nesting multiplication within the addition loop, operator precedence is
maintained; multiplication between values will always be performed before addi-
tion and thus a+ b ∗ c will be correctly evaluated as a+(b ∗ c) and not (a+ b) ∗ c. The
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result of the expression is contained in s after all iterations of the sum loop have
completed, and may then be stored in either system memory or temporary memory
(lookup memory is constant and not writeable at runtime). The storage location is
specified using the same syntax as value tuples, but exposing only writeable loc-
ations. System memory thus only exposes the ProtocolLength register, as the
field value register is read-only.

6.8 Filter Process

The filter process generates bit-based filter results for each packet in the processed
capture. This function combines comparison results (stored in working memory)
using bitwise logical operators. In comparison to the gather process, the filter pro-
cess is relatively simple, and quite similar to the expression evaluation process
described in Section 6.7.3. Both these processes are based on the filter process
used in prior work [66], which evaluated predicates using stored boolean values
and boolean logic (see Section 4.4). The use of bitwise operators over boolean op-
erators is extremely important to improving the performance of the filter process,
as it allows each thread to classify thirty two packets in a single bitwise operation,
while greatly improving storage and bandwidth efficiency. The predicate syntax
remains identical to the syntax shown in Figure 4.10.

The EBNF for the filter program evaluated by the process is provided in Listing 19,
while the psuedocode for the process is shown in Listing 20. Note that the WORKING
and RESULT macros correlate to the transformations discussed in Sections 6.4.2
and 6.4.3 respectively.

The filter process is constructed using a three tier nested loop, and uses the same
approach as expression evaluation to maintain precedence rules. The outer layer
iterates through each filter, storing results in either results memory or in working
memory. Results memory stores the final filter bit-strings that are returned to
the host, while working memory stores the results of parenthesised sub-predicates
in filter definitions. As working memory is also used by the gather process, later
iterations of the filter process treat gather results and prior filter results in working
memory as being identical.

Predicates combine bit strings using bitwise negation (~), conjunction (&) and dis-
junction (|) operators, and are handled by the central and inner-most loops. Dis-
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Listing 19 EBNF for filter program encoding.

1 program = filter count , { filter } ;
2 filter = or count , { group } , store location;
3 group = and count , { element } ;
4 element = invert , read index ;
5 store location = store type, write index;
6
7 filter count = number ;
8 or count = number ;
9 and count = number ;

10 invert = "0" | "1" ;
11 store type = "0" | "1" ;
12 read index = number ;
13 write index = number ;
14
15 number = digit , { digit } ;
16 digit = "0" | "1" | "2" | "3" | "4" |
17 "5" | "6" | "7" | "8" | "9" ;

Listing 20 Psuedocode for the filter process.

1 foreach filter in program
2 {
3 int ans = 0;
4 foreach group in filter
5 {
6 int sub = 0xFFFFFFFF;
7 foreach element in group
8 {
9 if (invert)

10 sub &= ~WORKING(element.index);
11 else
12 sub &= WORKING(element.index);
13 }
14 ans |= sub;
15 }
16 if (store type == 0) WORKING(filter.index) = ans;
17 else RESULT(filter.index) = ans;
18 }
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junction has the lowest precedence of the three operators and is performed by the
central loop, which combines the partial results returned by the inner-most loop.
The inner most loop in turn performs bitwise conjunction, while negation is per-
formed as the bit string is loaded into the filter process. Negation is only performed
if the invert flag preceding the specified index is set to one. After the predicate has
been processed by the two inner loops, the outer loop writes the result to either
working memory or result memory using a coalescing pattern, at a rate of 1024
results per storage operation per warp.

6.9 Summary

This chapter described the construction of the GPF+ packet classification kernel.
This discussion divided the classifier into two sub-processes. The first is the gather
process, which applies a DSL compiled gather program to the data supplied by
the packet cache in order to navigate protocols and compare and extract fields.
The filter process follows, and uses the working comparison results produced by
the gather process to compute and store arbitrarily complex predicates. These
processes are unified in a device side C++ object, which is initialised and executed
from within an encapsulating CUDA kernel.

The classification process was introduced in Section 6.1. This section first provided
an overview of the classification approach, introduced the component processes dis-
cussed above, and described the protocol layering abstraction used. This was fol-
lowed by an overview of how packets are divided among executing threads to avoid
block-level synchronisation. The section concluded by discussing how asynchron-
ous streams are used to improve device utilisation by overlapping kernel execution
with asynchronous memory copies.

Section 6.2 described the constant memory region, which contains globally access-
ible attributes, memory pointers, and program data that remain consistent both
throughout the process, and also between streams. This section also demonstrated
that all threads in a warp access constant variables simultaneously, avoiding seri-
alisation.

Section 6.3 summarised the dynamic variables contained in register-based state
memory. It was also shown that these variables are tightly packed into vector
types to minimise register utilisation.
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Section 6.4 discussed the various regions of global memory which hold system in-
puts and outputs, including packet records, working memory and results memory.
Attention was given to the different memory mappings used by working and res-
ults memory, which facilitate warp level synchronisation and fully coalesced access
to generated outputs.

Section 6.5 focussed on the packet cache, which locally caches segments of packet
data, and extracts fields from these segments on behalf of the gather process. It was
shown that the packet cache redistributes reads to better promote coalescing, using
warp shuffle operations to reorganise data after the read operations complete. The
section further described how alignment was managed using state memory, and
how this effectively reduced the capacity of the cache from 16 bytes to 12 bytes,
due to the need for slack storage. The final part of this section discussed the field
extraction process, which extracts field values from cache registers for use by the
gather process.

Section 6.6 described the main loop of the gather process, responsible for prun-
ing operations and cache filling. The section began with an overview of the layer
processing function’s implementation, and detailed the structure of the program
which guides it. The remainder of this section broke the process down into layer
switching, caching, and protocol set dispatch, discussing each in turn.

Section 6.7 detailed the field processing function, which extracts and processes
every field from a specific, relevant protocol, contained in a particular cache seg-
ment. This section described how field values are extracted, how field comparisons
are evaluated and converted into compact bit strings, and how protocol lengths are
calculated using encoded field expressions.

The chapter concluded with an overview of the filter process in Section 6.8, de-
scribing the temporary bit-based comparison results generated by the gather pro-
cess in order to evaluate complex predicates encoded in the filter program. The
filter process uses bitwise operators to simultaneously evaluate 32 packets per
thread per operation, significantly improving throughput while dramatically re-
ducing memory overhead.

The following chapter discusses the GPF+ DSL and compiler, which are used to
generate program and configuration inputs for the classifier from a high-level pro-
gram specification.
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Generating Programs

THE DSL discussed in this chapter provides a human-readable programming
interface that reduces the complexity of defining programs for the GPF+
classifier. This is necessary, as the classification kernel discussed in the

previous chapter relies on multiple program inputs that are too complicated to
reasonably create by hand. This chapter introduces the DSL, its grammar syntax,
and the compilation procedure applied to convert high-level programs into GPF+
classifier inputs. The chapter is broken down as follows:

• Section 7.1 provides an overview of the grammar’s construction, and intro-
duces its two major sections: the protocol library and the kernel function.

• Section 7.2 explains the grammar syntax used, with examples for clarifica-
tion.

• Section 7.3 details the compilation process, which converts high-level GPF+
programs into classification directives.

• Section 7.4 concludes the chapter with a summary.

164
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Figure 7.1: Overview of compilation and delivery of program inputs to the GPF+
classifier.

7.1 Grammar Overview

This chapter describes the design and implementation of the Domain Specific Lan-
guage (DSL) used to create programs for the GPF+ classifier, previously described
in Chapter 6. This DSL was developed in ANTLR 4 and C# 4.5, and is responsible
for translating a high-level filter program into various low-level directives. These
are used to both configure the process, and guide processing from the constant
memory space (see Section 6.2). An illustration of the DSL’s relation to other com-
ponents, and a summary of its primary outputs, is shown in Figure 7.2.

The grammar design is loosely based on the core DSL used in GPF (see Sec-
tion 4.4.2), reworked to increase flexibility, efficiency, reusabilty and readability.
ANTLR handles lexical analysis (which converts high-level code into streams of
tokens) and parsing (which translates token streams into data structures) [94].
The DSL then walks these data structures to prune redundancies and emit com-
piled programs.

The grammar specification is divided into the protocol library and kernel function,
which loosely correlate to the gather and filter processes in the GPF+ kernel (see
Section 6.1) . The protocol library maps out the general structure of each protocol,
and their connections to child protocols, while the kernel function specifies the
predicates and field extractions to be performed by a specific program. When a
protocol, field or comparison in the library is referenced in a kernel function, the
DSL is able to infer all necessary pre-requisite operations needed to reach that
reference by following the connections defined in the library. Only the parts of the
library relevant to the kernel function are used, allowing for large and detailed
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Listing 21 Example GPF+ high-level program targeting the IP protocol and
TCP/UDP service ports.

1 //protocol library
2 ...
3 protocol IP {
4 field Length [4:4] { $length = $value; }
5 field Protocol [72:8] {
6 .TCP == 6;
7 .UDP == 17;
8 }
9 switch (Protocol){

10 case UDP: goto Ports;
11 case TCP: goto Ports;
12 }
13 }
14 protocol Ports {
15 field Src [0:16];
16 field Dst [16:16] { .DNS == 53 }
17 }
18 //kernel function
19 main() {
20 filter tcp_http = IP.Protocol.TCP && (Ports.Src == 80 || Ports.Dst ==

80);
21 filter dns_dest = Ports.Dst.DNS;
22 field ip_proto = IP.Protocol;
23 }

libraries to be constructed without impacting on compiled program size.

The high-level syntax structure is primarily inspired by C++ style languages, with
protocol structure specified in class-like objects, and kernel processes encapsulated
in an entry point method. An example GPF+ high-level program showing both
the protocol library and and kernel function is provided in Listing 21. The protocol
library contains two connected protocol definitions, the second of which generalises
TCP and UDP protocols to access the port of either protocol in a single operation.
TCP and UDP may also be declared and handled separately for greater control.

Similarly to the object model it is based on, the protocol library and its definitions
are intended to be easily extended and reused across multiple GPU kernels, in or-
der to avoid the need for replication across multiple programs. This was originally
planned to operate similar to header files in C++, allowing generic reusable librar-
ies to be included rather than repeatedly specified. Due to scope pressure however,
this functionality has been left for future work; the current implementation uses a
single file containing both the kernel program and its complete supporting protocol
library as input.
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The DSL processes input files to produce the gather and filter programs used by
the classifier, as well as the majority of configuration details stored in constant
memory (see Section 6.2). This information may then be passed via 0MQ to the
classifier via the server interface to be used immediately, or stored for use by the
command line interface at a later time (see Section 5.1.5).

7.2 Grammar Syntax

This section outlines the grammar syntax and the means by which it is parsed
into memory. High-level GPF+ programs are composed of a collection of protocol
definitions, each containing their own field information and comparisons. These
protocols are connected together using a simple syntax, derived from switch state-
ments, into a conceptual protocol tree. This tree may then be flattened into the
layer structure used in the gather program (see Section 7.3). The kernel function
uses the structure of and connections between protocols, supporting the translation
of simple predicates (such as TCP.SourcePort == 443, or TCP || UDP) into an
optimised program set that contains all the necessary preliminary steps (for in-
stance, whether the packet is an IPv4 or IPv6 datagram) while ignoring irrelevant
processing (such as if the packet is an ARP packet). This process is illustrated in
Figure 7.2 using a simple filter for incoming SSH (Secure Shell) traffic.

In the figure, the filter is used to prune all irrelevant protocols, fields and com-
parisons from the protocol tree, leaving only those required to perform the filter
and field extractions defined in the kernel function. This reduces the more general
protocol library to only the elements required to process the supplied filters. As a
result, large sets of protocol and field definitions have no impact on program size or
execution duration, as all known redundant information is automatically pruned.
All remaining protocol redundancies (i.e. included protocols that do not occur in
the packet set) are removed through runtime pruning (see Section 6.6).

In addition to eliminating unnecessary computation, this approach helps facilitate
better protocol reuse within programs, as it allows protocols to be referenced in
multiple paths (and eventually programs) without replicating the protocol defini-
tion. With respect to the current implementation, this allows protocols to support
multiple parent protocols or paths without replicating the protocol definition in
each path (see TCP in Figure7.2). The original GPF grammar required separate
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Figure 7.2: Pruning the protocol library to produce a GPF+ layer structure.

definitions for protocols such as TCP and UDP to account for IPv4 and IPv6 parent
protocols in both the DSL and emitted GPF code; the GPF+ DSL and byte code, in
contrast, only require one.

The remainder of this section describes the grammar syntax in more depth, with
the first three subsections describing the protocol library. Section 7.2.1 introduces
the syntax for specifying protocols, fields and comparisons. Section 7.2.2 explains
connecting protocols using switch statements. Section 7.2.3 discusses handling
variable length protocols through length field processing. The final subsection fo-
cusses on the kernel function syntax, showing how filters and field extractions are
defined. The complete EBNF for the grammar is too long to be included here, but
can be found in Appendix A.

7.2.1 Protocols and Fields

Protocols are the basic elements in the protocol library, containing all the fields,
filters and connections that apply to them. Specifically, protocol definitions encap-
sulate a set of field specifications which in turn may contain zero or more named
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comparisons. Protocols and fields are declared using the protocol and field

keywords respectively, while named comparisons within fields are prefixed with a
period character. The position and length of fields within a protocol are specified
with square brackets of the form [x : y] where x is the zero-based bit offset of the
field within the protocol and y is the bit length of the field. Field sizes are currently
limited to 32 bits, but larger fields can be accommodated by subdividing them into
multiple 32-bit fields. This could be performed automatically by the compiler in a
future build.

Field comparisons are contained within the field body following the field declara-
tion; the declaration is terminated with a semi-colon if no comparisons are defined.
Field comparisons support the standard operators (==, !=, <, >, <=, >=) which
are used to compare the field value with a numeric constant, specified as either
a decimal value, hexadecimal value, or IPv4 address. An example program defin-
ing a subset of the Ethernet II protocol is shown in Figure 22.

Listing 22 Example specification for the Ethernet II protocol

1 protocol EthernetII
2 {
3 field MacSource[0:48];
4 field MacDestination[48:48];
5 field Protocol[96:16]
6 {
7 .IP == 0x800;
8 .IPv6 == 0x86DD;
9 .ARP == 0x806;

10 .IEEE802 <= 1500;
11 }
12 }

7.2.2 Protocol Switching

Switching to new protocols is achieved by borrowing the syntax of the switch

statement from C style languages virtually unaltered. The switch statement takes
an existing field identifier as the condition and uses named filter comparisons as
case values. Switch cases currently only support the goto operator, which takes
another protocol as an argument, essentially adding that protocol as a child node
of the current protocol if the switch case succeeds. It is worth noting that circular
and self-references are illegal by design, following the practices of other filters like
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Listing 23 Protocol switching example.

1 protocol EthernetII
2 {
3 ...
4 field Protocol[96:16]
5 {
6 .IP == 0x800;
7 .IPv6 == 0x86DD;
8 .ARP == 0x806;
9 .IEEE <= 1500;

10 }
11 switch(Protocol)
12 {
13 case IP: goto InternetProtocol;
14 case ARP: goto ARP;
15 case IEEE: goto IEEE802_3;
16 }
17 }
18 protocol IEEE802_3 { ... }
19 protocol InternetProtocol { ... }
20 protocol ARP { ... }

DPF and BPF+ [9, 23]. Specifically, no protocol can be a direct child or a descend-
ent of itself. Currently each protocol may only contain a single switch statement,
and may not employ goto statements outside of this context. This may change in
future work to improve flexibility by allowing multiple switch statements within a
protocol, supporting more general computation within switch statements, and al-
lowing switch cases to span multiple commands. An example of protocol switching
is provided in Listing 23.

It is worth noting that protocol switching may additionally be used as a means of
facilitating optional fields such as the 802.1Q VLAN (Virtual Local Area Network)
tag in the Ethernet header (see Appendix B.1), or other optional fields. This is
achieved by switching to a separate virtual protocol that includes the optional field
and the remainder of the protocol, as shown in Listing 24. Thus, while optional
fields are not explicitly supported, they can be processed partially through creative
use of the switch statement.

Handling optional fields in this manner is not particularly efficient, as it fragments
protocols into multiple layers, each requiring an expensive cache fill. Dedicated
support for optional fields was originally included in the design of the classifier
and DSL, but was scoped out of the final implementation as optional fields are
typically rare, and can generally be emulated via protocol switching, as shown
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Listing 24 Supporting optional fields through switching.

1 protocol EthernetII {
2 field Protocol[96:16] {
3 .IP == 0x800;
4 .VLAN == 0x8100; ...
5 }
6 switch(Protocol) {
7 case IP: goto InternetProtocol;
8 case VLAN: goto IEEE802_1Q; ...
9 }

10 }
11 protocol IEEE802_1Q {
12 field PriorityCodePoint [0:3];
13 ...
14 field Protocol [16:16] {
15 .IP == 0x800; ...
16 }
17 switch (Protocol) {
18 case IP: goto InternetProtocol; ...
19 }
20 }
21 protocol InternetProtocol { ... }

above. Improved support for optional fields is intended for future work (see Section
12.4).

7.2.3 Protocol Length

Protocol length is typically derived at compile time using the bit offset and length
of the last protocol field, if it is included. If the final protocol field has been omitted,
the default protocol length can be defined by appending a default length in square
braces to the protocol definition. Specifying a default length is optional, and is
useful in variable length protocols when the compiler cannot otherwise infer pro-
tocol length from field definitions. When protocol length is not fixed and may vary
between packets, the length of the protocol may be specified explicitly or calcu-
lated from the value of a header field, using the $length and $value registers
exposed within the field body.

The $length register corresponds to the ProtocolLength register in classifier
state memory (see Section 6.3), which is used to determine the byte offset of the
next protocol in the stack after each layer completes. The length of a variably
sized protocol is typically specified as an integer within a field header (generally
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Table 7.1: Referencing the Library
Reference Type Example
Protocol filter TCP

Comparison filter TCP.SourcePort >= 1000
Filter filter TCP.SourcePort.DNS

Field int TCP.SourcePort

the number of bytes or n byte words in the header), which is exposed within that
field by the read-only $value register. Figure 25 shows how the length of an IPv4
packet can be set at runtime using a simple multiplication expression.

Listing 25 Example IP protocol length.

1 protocol IPv4 [160] { //default length
2 field IHL[4:4] { //number of 4-byte words
3 $length = $value * 4; //convert to bytes
4 } ...
5 }

Division, subtraction and other operators are not supported, as the GPF+ classi-
fier currently only supports addition and multiplication operators when calculating
length (see Section 6.7.3). Other operators may be included in future work, if ex-
pression evaluation is expanded beyond simple length processing to include user
defined variables and output arrays. Alternatively, length calculation could be re-
placed with an optimised scaling function, such as in DPF [23] (see Section 4.2.4),
allowing for expression evaluation to be performed in a separate processing phase
better suited to the task.

7.2.4 The Kernel Program

The kernel program is an encapsulating or entry method which specifies the func-
tions to be performed by the filter program, utilising the protocol structure defined
in the library. The kernel program can produce output data containing either filter
results or field values, using filter and int data types respectively.

Results arrays are declared like single variables, and conceptually contain the res-
ults for each packet processed. The int data type declares an array of 32-bit
integers used for field extraction, while the filter data type allocates a bit ar-
ray where each bit stores the result of the associated filter for a single packet (see
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Section 6.4.3). The filter library is invoked from within the kernel program by ref-
erencing a protocol, field, or comparison defined within it. The protocol library can
be invoked in four distinct ways, summarised in Table 7.1. These library reference
types are restricted by context; functions which return bitwise filter values may
not be invoked from within integral field values stored in int kernel declarations,
and vice versa. Library references of a filter type may be combined through stand-
ard boolean operators to form arbitrarily complex predicates, which are eventually
computed during the classifier’s filter process (see Section 6.8). In contrast, field
declarations can currently only store references to a single raw field value.

Listings 26 shows a complete example protocol library and kernel function, which
specify four filter operations and two field extractions from protocols in the IP suite.

7.3 Program Generation

This section describes the process by which a filter specification is processed to
emit a compiled GPF+ program set. Program compilation is initiated after the
high-level program has been converted to a token stream by the ANTLR-produced
lexer object [94], and is conceptually divided into three phases:

1. The high-level program is parsed into data structures.

2. The protocol tree is pruned of redundancies.

3. The reduced tree is processed to emit a complete program.

(a) The reduced tree is converted into an intermediate layer-based data struc-
ture.

(b) The intermediate data structure is processed to emit a low-level pro-
gram.

During the parsing phase, the high-level program is parsed into objects in memory,
organised into a tree of protocols and a collection of kernel function definitions.
Once parsed, the kernel function definitions are used to prune irrelevant struc-
tures from the protocol tree, leaving only the records required to perform the re-
quested processes. In the emission phase, the reduced protocol tree and the kernel
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Listing 26 Complete example GPF+ protocol library.

1 //protocol library
2 protocol EthernetII {
3 field Protocol[96:16] {
4 .IP == 0x800;
5 .IPv6 == 0x86DD;
6 }
7 switch(Protocol) {
8 case IP: goto IPv4;
9 case IPv6: goto IPv6;

10 }
11 }
12 protocol IPv4 {
13 field IHL[4:4] { $length = $value * 4; }
14 field Protocol [72:8] {
15 .TCP == 6;
16 .UDP == 17;
17 }
18 field SourceAddress [96:32];
19 field DestinationAddress[128:32];
20 switch(Protocol) {
21 case TCP: goto TCP;
22 case UDP: goto UDP;
23 }
24 }
25 protocol IPv6 {
26 field PayloadLength [32:16] { $length = $value; }
27 field NextHeader [48:8] {
28 .TCP == 6;
29 .UDP == 17;
30 }
31 switch(NextHeader) {
32 case TCP: goto TCP;
33 case UDP: goto UDP;
34 }
35 }
36 protocol TCP {
37 field SourcePort[0:16];
38 field DestinationPort[16:16];
39 }
40 protocol UDP {
41 field SourcePort[0:16] { .SomeApp == 1234; }
42 field DestinationPort[16:16];
43 }
44 main() //kernel function
45 {
46 filter ipv6_tcp_udp = IPv6 && (TCP || UDP);
47 filter srcport443 = TCP.SourcePort == 443 || UDP.SourcePort == 443;
48 filter SomeAppv6 = !IPv4 && UDP.SourcePort.SomeApp;
49
50 filter ClassBSrcAddr = IPv4.SourceAddress > 128.0.0.0 && IPv4.

SourceAddress < 192.0.0.0;
51
52 int tcp_destport = TCP.DestinationPort;
53 int destaddress = IPv4.DestinationAddress;
54 }
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Figure 7.3: Overview of the compilation process.

program are used to generate new data structures aligned more closely with the
virtual machine architecture. These new structures are then used to generate byte
code and execution parameters for the GPF+ classifier. These stages are shown
in Figure 7.3, and fit closely with the high-level illustration shown previously in
Figure 7.2. The following subsections discuss these stages in order.

7.3.1 Parsing

The protocol library is parsed into memory as a tree structure (see Figure 7.4),
similar to those used in decision tree filters such as BPF and BPF+ [9, 54]. Each
protocol is a node in the tree and may have any number of child protocols branching
from it. At the root of the tree is the physical layer protocol, which is determined
by the network interface and is specified in the capture’s global header; all other
protocols are determined at runtime by inspecting the contents of packets. Due to
scope restrictions, the root protocol must be specified at the top of the program file,
and thus a program can only target one interface. This presents an inconvenience
rather than a severe limitation, circumvented by copying and slightly adjusting
the specification to use a different root protocol.

Protocols are parsed individually into a collection during the parsing process, and
are subsequently connected through a simple recursive descent, initiated by the
root protocol after the library has been parsed. The process creates and fills two
separate hash set collections for each protocol it reaches, containing the set of all
ancestor protocols (passed down from parent to child) and descendent protocols
(passed up from child to parent) respectively. To prevent circular dependencies,
the parsing process results in an error if a protocol is added to both ancestor and
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Figure 7.4: Example protocol tree.

descendent sets of another protocol, or if a protocol adds itself to one of its own
sets. Aside from these sets, protocols are rather simply composed. Each contains
a linked list of field definitions, and a switch definition if one is specified. In turn,
each field contains a linked list of filter comparisons, and a linked list of expressions
containing any calculations that are performed within that field.

The kernel function is parsed next, and used to populate three hash sets of protocol,
field and filter object references. These hash sets contain all required protocols,
fields and and filters specified in the kernel function.

• Fields and filters are simply handled. They are assigned a storage index in
results and working memory respectively, and are added otherwise unaltered
to the field hash set.

• Comparisons are automatically converted to filters by providing them with a
unique, system generated identifier. For instance, the comparison
TCP.SourcePort == 53 is handled by adding .XYZ == 53 as a filter to the
TCP.SourcePort field in the tree (where XYZ represents a unique system-
generated, internal and transparent identifier). The filter
TCP.SourcePort.XYZ is then added to both the protocol tree and the filter
hash set, assigning storage in working memory.

• Protocols are identified within the switch statements of parent protocols, and
thus do not need to be included within a dedicated layer. The protocol hash set
contains these references, rather than the protocols themselves. To populate
the protocol hash set, each referenced protocol is used to generate a set of
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Figure 7.5: Matching TCP protocol from multiple parent protocol comparisons.

parent protocols, each containing a switch statement that points directly to
the referenced protocol. All relevant switch statements in the parent set are
assigned the same working memory index, before being added to the protocol
hash set. For example, a protocol reference of UDP would add the equivalent of
IPv4.Protocol.UDP and IPv6.NextHeader.UDP to the protocol hash set,
both pointing to the same working memory array.

Assigning the same working memory index to filters in disjoint protocols allows
a child protocol to be matched by multiple parents without additionally requiring
a separate working array for each parent. This is possible because no more than
one parent protocol can connect to any one child in a single packet. To account for
different paths taken by different packets, the classifier uses bitwise OR operations
to update existing stored values, rather than fully overwriting previously collected
results (see Section 6.7.2). An illustration of this process when matching the TCP
protocol from IPv4 and IPv6 headers is shown in Figure 7.5.

7.3.2 Pruning Redundant Entries

The filter, field and protocol hash sets, once constructed, are used to trim redundant
elements from the protocol library (see Figure 7.6). The first step in this process
involves producing target sets for both protocols and fields.
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Figure 7.6: Pruning the example protocol tree.

• The protocol target set contains all required protocols in the library, and is
created by finding the union of all encapsulating protocols in all hash sets.

• The field target set similarly contains all required fields. It is created by
finding the union of all fields in the field hash set, all encapsulating fields in
the filter hash set, and all switch fields in the protocol hash set.

The protocol target set is applied first to recursively test every protocol in the lib-
rary for relevance, starting from the root protocol. Protocols are retained in the
tree if they meet one of the following criteria:

1. They are the root protocol.

2. They are contained in the target protocol set, and thus contain a required
field or filter.

3. They are both a descendant of the root protocol and an ancestor of a target
protocol, and are therefore required to reach a targeted field or filter.

The next pruning step removes all unnecessary fields from the remaining protocols.
Fields are retained in the library if they meet one of three criteria:

1. They are contained in the field target set, and were therefore directly refer-
enced.

2. They contain the length calculation for a protocol that has a target protocol
as a descendant.
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Figure 7.7: Generating DSL outputs.

3. They are used by a switch operation that connects to a protocol contained in
the target set.

Note that length and switch fields are omitted if their containing protocol does not
connect to a child that is a valid target protocol.

Once all unnecessary fields have been removed, the remaining fields are inspected
to remove unnecessary filters. This process leaves only those filters which are
required to evaluate specified comparisons (and thus have an assigned working
memory index), or are otherwise needed to switch to target protocols. At this point
the protocol tree has been stripped of all unnecessary definitions, and is ready to be
converted to a layer structure, which closely resembles the structure of the target
language. This is the topic of the next section.

7.3.3 Emitting Programs

Program emission uses the pruned protocol library, in conjunction with the kernel
function definitions, to produce a set of inter-connected protocol sets, organised into
a layer-based data structure similar to that of the targeted classifier. The emission
process then flattens this data structure into program byte code and configuration
constants, which may then be dispatched to the classifier via 0MQ, or stored as
compiled GPF+ programs on disk. This transformation is illustrated in Figure 7.7.

To begin, the library is first converted into a temporary data structure composed
of an ordered set of layers, architecturally similar to the layer abstraction used in
the classifier’s gather process. Each layer contains one or more protocols which



7.3. PROGRAM GENERATION 180

in turn contain their associated fields, filters, expressions and switch functions.
Once the layer structure has been constructed, the contained protocols are divided
into the minimum number of cache chunks required to contain each layer. This
information is used during code emission to specify cache load offsets and field
offsets (see Sections 6.5 and 6.7.1) .

Once complete, the kernel function definitions (stored alongside the kernel hash
sets) are in turn converted to collection of objects, tied to the correct storage in-
dex for each referenced library element. At this point, the sets of protocol layers
and kernel function objects contain all the necessary information to generate the
program byte code and meta data; this information is used during memory alloc-
ation to correctly size GPU global memory and host buffers, and to populate the
classifier’s constant memory space (see Section 6.2). The emission process builds
programs by walking the optimised layer and kernel data structures, using linked
lists to accumulate the generated byte streams. These linked lists are converted
to fixed arrays on completion. Once the programs and other outputs have been
generated, they are either sent to the classifier process via TCP, or stored on disk
for command-line use (see Section 5.1.5).

The DSL outputs are encapsulated in a C# object, which provides functions to
handle transmission and serialisation. The variables and arrays generated by the
DSL and stored in this class are listed in Table 7.2, along with their size and data
type. These program components are either transmitted over TCP (using 0MQ) to
the classification server, or serialised to file for reuse. A brief summary of each of
the variables contained in the output object is included below:

Data Start The byte offset from the start of each packet record of the first cache
load function. Used by the pre-processor to trim leading bytes from raw pack-
ets (see Section 5.5)

Data Length The number of bytes to include from each packet. This value is
currently inflated by the classifier by 20 bytes (to provide additional slack in
case of optional fields) and rounded to the nearest integer boundary.

Working/Filter/Field Count The number of unique working/filter/field values
extracted by the program. These values are used to properly size GPU results
and working memory (see Section 6.4), and to derive runtime constants (see
Section 6.2.4). These values are also used, in combination with DataLength,
to determine how many packet records are stored in each buffer.
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Group Name Length Type

Constants

Data Start

8× 4 bytes Integer

Data Length
Working Count
Filter Count
Field Count
Lookup Count
Layer Count

Program
Gather Program

Varies Byte []Filter Program
Lookup Table Integer []

Names Filter Names Varies String []
Field Names String []

Table 7.2: Summary of DSL outputs.

Lookup Count The number of integer values stored in the value lookup table (see
Section 6.2.2).

Layer Count The number of layers in the gather program, used from constant
memory to control the number of layer iterations in the gather process (see
Section 6.6).

Gather/Filter Program The byte code for each program, prefixed by an integer
indicating their byte length (see Section 6.2.1).

Lookup Table The integer contents of the lookup table.

Filter/Field Names The string identifiers of each defined filter and field extrac-
tion operation in the kernel function. Each string is prefixed by an integer
length, and each set of strings is pre-fixed by a total count. These strings are
used by the classifier to name filter and field files (see Section 6.4.3).

7.4 Summary

This chapter described the high-level domain specific language used to specify filter
programs, and the compilation process used to convert specifications into classifier
byte code. The chapter began with a brief overview of the grammar and the APIs
used to support it in Section 7.1. The APIs used include ANTLR, which facilitates
lexing and parsing; .NET (via C#), which optimises, restructures and emits parsed
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data structures as byte code; and 0MQ, which relays compiled programs to the
classification server process. This section also introduced the high-level structure
of the grammar, which is divided between the protocol library and kernel function.
The protocol library contains reusable protocol definitions connected together to
form a protocol tree, which is referenced by the kernel function to evaluate filters
and extract field data.

Section 7.2 detailed the grammar syntax used for creating filter programs. Proto-
cols, fields and filters are defined within class-like structures, connected through
switch statements, with support for adjusting protocol length using dedicated re-
gisters. These structures are referenced within the kernel function to abstract
away the complexity of filter creation. Section 7.3 concludes the chapter by step-
ping through the parsing, optimisation and code emission phases of the compil-
ation process, which together convert the high-level specification into GPF+ pro-
gram byte code. This byte coded is encapsulated within an object which handles
transmission to the classifier and serialisation operations.

Having examined the host process, classification kernel and DSL, which together
constitute the packet classification process, the following chapter briefly explores
three interconnected example applications which apply generated results to accel-
erate aspects of packet analysis.



8
Post-processing Functions

THIS chapter discusses three related example applications that utilise the
outputs of the classification process (discussed in Chapters 5, 6, and 7) to
accelerate aspects of long-term capture analysis. The purpose of discuss-

ing these applications is to provide working examples that demonstrate the the
classification system’s use, and to evaluate its outputs and performance. As these
functions fall outside the main classification process (they merely apply the results
of the process within a specific context) and exist primarily as proof of concept im-
plementations, the discussion is less technically involved than in prior chapters.

• Section 8.1 describes a simple function that calculates the distribution of val-
ues within a field file and displays them as a sorted bar graph.

• Section 8.2 describes an example application which utilises filter and index
data to rapidly visualise large long-term captures within an OpenGL-based
Windows Forms control. This control plots average traffic volume, packet
arrival rate and packet composition over time.

183
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• Section 8.3 discusses an example capture distillation function, which applies
filter, index and packet data to generate pre-filtered capture files. These are
easier and less resource-intensive to process in existing protocol analysis soft-
ware.

• Section 8.4 concludes the chapter with a summary.

8.1 Simple Field Distribution

The simple field distribution is a function which operates on a single field result file
(see Section 6.7) to produce a break down of the distribution of its stored values.
Determining this distribution is easily achieved with the use of a .NET dictionary
object, using unique field values as the dictionary keys, and the associated counts
as dictionary values. In brief, the function iterates through each field stored in the
field file, either adding a new dictionary key (with an associated dictionary value
of one) if it is the first occurrence of the field value, or incrementing the associated
count of a value if it already exists in the dictionary. The resultant field value /
count pairs can then be sorted and displayed with relative ease. Sample output
showing the top field values for Ethernet’s ethertype field, as well as TCP and
UDP source ports, is shown in Figure 8.1. This figure is composed of three cropped
screen captures showing the most significant values, annotated with field specific
headers, and the names of protocols or applications most commonly associated with
each port, for legibility.

The produced distributions can be used to quickly ascertain the most significant
active protocols or field value ranges within a capture, which provides a means
to investigate a captures contents. While processing extracted fields on the host
is significantly faster and easier than processing raw capture files (see Section
11.3.3), it is important to note that accelerating this function using CUDA is not
particularly difficult, and would likely be hundreds of times faster [8, 34].

The CUDA Thrust API1 [34], for instance, provides the reduce_by_key function
which reduces key/value pairs using GPU acceleration, outputting results equival-
ent to the CPU implementation discussed above [34]. Specifically, the function re-
duces a set of non-unique key / value pairs to a set of unique keys, each paired with

1https://developer.nvidia.com/Thrust

https://developer.nvidia.com/Thrust
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Figure 8.1: Sample distributions showing top field values for 338 million packets.

the sum of all values associated with that key. Thrust provides a simple template-
based wrapper that makes it relatively easy to employ, and helps to reduce CPU
overhead while significantly accelerating computation [34].

While it significantly outpaces the simple CPU implementation discussed above,
the Thrust API does not provide performance gains equivalent to a well construc-
ted CUDA kernel. Segmented reduction [8], for instance, can perform a similar
reduce-by-key operation at a rate of over 10 billion fields per second on a GTX Ti-
tan, outperforming Thrust by a factor of three to four in included benchmarks [8].
Either of these approaches could be incorporated with little effort; they have not,
however, been implemented in this study, as their performance is already estab-
lished.

8.2 Visualising Network Traffic over Time

The second application is a user-interface which provides functionality to visual-
ise and explore the dynamics of capture traffic over extended periods of time. The
application’s implementation is a relatively minimal proof of concept that relies on
OpenGL for rendering performance; it was used in place of existing libraries to mit-
igate the possibility of external code introducing unexpected overhead at runtime,
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Figure 8.2: Screen capture of a visualised capture, showing statistics for the 1-hour
period highlighted.

which could transparently skew performance results. As the visualisation com-
ponent is not novel, and is only intended as an application for testing purposes,
a detailed consideration of its components falls outside of the scope of this docu-
ment. This section instead limits discussion to a high-level architectural overview
of the control that displays the traffic graphs, describing the processes which con-
vert classification outputs to graph vertex data.

Visualisation depends heavily on index files (see Section 5.5.2) and filter results
(see Section 6.4.3) generated during packet processing, in order to allow for real
time exploration of large captures without exhausting host memory. The interface
is implemented in C# to facilitate rapid prototyping and experimentation, with
visualisations constructed in OpenGL2 (Open Graphics Library) [106] through the
OpenTK3 (Open ToolKit) C# wrapper [92].

The graph control displays an overview of the capture by using the per-packet and
time-stamp index files to calculate the number of packets and amount of data over
various time intervals (see Section 8.2.3). This may then be expanded and con-
tracted in near-real-time, with rendering facilitated by GLSL (OpenGL Shading

2https://www.opengl.org/
3http://www.opentk.com/

https://www.opengl.org/
http://www.opentk.com/
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Figure 8.3: Expanded view of highlighted section in Figure 8.2.

Figure 8.4: Simplified overview of visualiser process.

Language) [43] programs which execute on the GPU. This section provides two im-
ages generated by the visualiser that illustrate this. Figure 8.2 shows the default
rendering level which spans the capture, with an hour long segment highlighted.
Figure 8.3 shows an expanded and more detailed view of the highlighted segment,
displayed by double clicking it in the UI (User Interface). In the graph images, the
large dark blue line indicates the number of packets arriving at that time, while the
red line shows the volume of packet data arriving at that time. These line graphs
are scaled such that their respective maximum values meet the top of the view
port, highlighting relative rather than absolute performance. All coloured areas
represent the packets matching each filter, scaled proportional to the maximum
packet count.

The rendered graph collection provides a means of viewing traffic dynamics over
time, simplifying detection of hostile or anomalous activity, and helping to identify
trends in traffic. A simplified overview of the graph creation process is provided in
Figure 8.4. The following subsections explain and discuss this process in greater
detail.
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8.2.1 Managing Memory Utilisation

Avoiding over-utilisation of finite host memory resources is a primary concern for
an application specifically aimed at visualising arbitrarily large packet traces, as
inputs are expected to regularly exceed host memory capacity. As the interface
is intended to visualise packet sets that could potentially span terabytes, it is ex-
tremely impractical to depend on raw packet captures as a primary resource for
visualisation. While iterative buffering could limit the host memory overhead of
processing the capture directly, it would still require parsing the packet capture
at least once to initialise visualisation data, which would bottleneck performance
at the throughout limitations of file I/O (see Section 5.4). The visualiser instead
depends on index files and filter results generated during classification, as these
require significantly less storage than raw capture files, and can be loaded faster,
stored more easily and accessed more efficiently than raw packet records. Index
and filter files are used to derive metrics (see Section 8.2.3) that are in turn ap-
pended to a tree data structure; the packet index and filter files themselves are
not retained in memory, and do not need to be fully read to be used. This prevents
memory utilisation from scaling linearly with capture size, and helps to secure high
throughput by limiting the impact of slow file access. In contrast, time index files
are stored in entirely in memory as they scale with capture duration rather than
packet count, at a rate of roughly 240 MB per year. As the duration of even long-
term captures rarely exceed a year or two, storing time indexes in memory helps to
reduces disk contention during processing without a significant risk of unbounded
memory utilisation.

8.2.2 Structuring Visualisation Data

The graph control depends on efficient access to packet index data to quickly adjust
to different temporal scales (from years to minutes for instance). While packet
index data can require significant storage for long term captures, most of the offsets
encoded in the index data are not required directly by the process (see Section
5.5.2). As a result, relevant information can be loaded in piecemeal on demand, and
retained in a tree structure that summarises data over increasingly finer intervals
of time.

Each tree node covers a particular unit of time at a specific level of scale – either
minute, hour, day, month or year – and contains detailed information on that spe-
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cific segment of the capture, including but not limited to total packet count, total
data volume and matching counts for each filter for the time period. Larger units
of time act as parent nodes to a collection of smaller units. For instance, a node
covering a particular day will typically contain 24 child nodes that subdivide the
hours of that day. Child tree nodes are only added to a parent node if a portion
of the capture being processed intersects with the child’s specific subdivision, so
nodes on the edge of captures may not contain a node for every subdivision unit.
Figure 8.5 provides a simplified high-level illustration of the organisation of the
tree structure as it applies to a theoretical capture.

This hierarchical structure allows the index data to be represented and retained at
variable resolutions, scaling from per second metrics to yearly averages by travers-
ing between parent and child nodes. As previously discussed however, packet index
data scales linearly with packet count and thus has the potential to grow too large
to be contained in system memory. To avoid over-utilising memory, not all levels
of the hierarchy are initially populated; only nodes on levels from the root down
to and including the captures default render level are added on initialisation, with
remaining elements loaded sparingly on demand. The captures render level is an
adjustable property that indicates which layer of the tree to use when generating
vertex data; it is initialised to a level appropriate to the timespan of the visualised
capture, using a simple set of heuristics. Figure 8.6 provides an example of this,
showing the default tree constructed for an arbitrary long term capture spanning
several months, with the render level initialised to one day. Each individual day
node is populated with metrics (see Section 8.2.3), which are passed up through
the tree to calculate and store parent node metrics.

When the render level is lowered from its initial setting to a smaller unit of time,
additional nodes are created, filled and appended to the tree. These nodes are
created on demand for the specific subsection of the capture being rendered to avoid
loading unnecessary data and conserve host memory. For instance, if a particular
hour in a day-long capture is expanded and requires minute resolution nodes to be
appended to the tree as a result, only minutes falling within the expanded hour
are parsed into nodes and appended to the tree. This means that the system only
needs to retain high resolution nodes for a few short and relevant segments of the
capture, reducing read overhead and conserving host memory, whilst dramatically
reducing the work load required to visualise the capture.
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Figure 8.5: Simplified illustration of the uppermost nodes for a hypothetical cap-
ture, with two defined filters.

Figure 8.6: Default tree construction for an arbitrary capture spanning just over
three months.
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8.2.3 Visualised Metrics

Nodes in the time tree store inclusive packet count, data volume and filter match
metrics for the time span that they encapsulate. These metrics are established
through interaction with the capture’s packet index and time index files, as well as
with all filter results files related to the capture. This section describes how each
of these metrics is derived from the classifier’s outputs.

8.2.3.1 Packet Count

The packet count reflects the number of packets that arrived during the time in-
terval encapsulated by the tree node. It is the simplest metric to derive and relies
only on the capture’s time index file for input. Let the process of accessing records
in the time index file be represented by the function f , such that f(a) = b (where
a is a specific second and b is the index of the first packet to arrive a seconds after
the start of the capture). Let s and t be arbitrary temporal indices which satisfy
0 ≤ s < t, and let p and q be packet indexes such that p = f(s) and q = f(t). Then
the packet count C between s and t is given by C = q − p = f(t) − f(s). This al-
lows the packets between any two arbitrary seconds within a capture to be counted
with two 8-byte reads, regardless of relative proximity, providing an appropriate
mechanism to determine the number of packets contained in a tree node’s time
span.

8.2.3.2 Data Volume

The traffic volume of a node indicates the total number of bytes spanned by a node,
and is derived using the packet index file in conjunction with the packet count C

and the packet indices p and q derived previously. Let the function g represent the
process of accessing the packet index file such that g(b) = c, where b remains the
index of a packet and c is the byte offset of that packet in the capture file. Let x and
y be byte offsets such that x = g(p) = g(f(s)) and y = g(q) = g(f(t)). Taking into
account that each packet record in the capture contains a 16 byte packet header,
the total volume V of packet data between p and q is given by V = y − x − 16C =

g(q)− g(p)− 16(q − p).
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It is worth noting that the index files may be used to derive other metrics, such
as average packet arrival rate and average packet size [74]. These metrics indic-
ate the average number of packets received per second and the average size of
individual packets, respectively. Average arrival rate is given by C

t−s
= q−p

t−s
, while

average size is given by V
C

= y−x
q−p
− 16. These metrics are not visualised in the

current implementation, but are displayed when a particular tree node (or time
segment) is highlighted in the interface (see Figure 8.2).

8.2.3.3 Filter Match Count

The filter match count is a measure of how many packets in a given interval match
a particular filter. Each node stores one count for each filter, which is derived
by summing the number of 1 bits in segments of bitwise predicate results (i.e.
finding the Hamming weight of the bitstream). Unlike the metrics generated from
index files, which only require accessing the first and last elements for a given
node, generating the filter match count requires processing all recorded bits for
the period between s and t in all filter files. The visualiser employs a high-speed
CUDA-based filter counting kernel to facilitate this.

The counting kernel is a post-processing function provided by the classification
server, invoked from the C# client through a 0MQ socket connection over TCP. The
client reads and packages filter results data as byte arrays, cropped to the results
relevant to the node and masking edges where necessary. Each array segment sent
from the client is received by the C++ server in its own separate GPU execution
stream and returns a single integer result to the host on completion.

The counting kernel is shown in Listing 27. The kernel begins with each thread
performing a coalesced 32-bit integer read from the filter segment into register
memory. The integer is then immediately processed using the hardware acceler-
ated __popc (or population count) intrinsic function, which counts the number of
1 bits set in a register at a throughput of 32 operations per warp (or alternatively
one instruction per thread) per clock cycle [87]. This allows the warp to convert the
filter results of 1,024 packets into 32 partial sums in a single clock cycle.

Once complete, each thread in the warp contains an initial count covering a specific
set of 32 packets. These are summed through a warp shuffle based reduction,
which provides fast and implicitly synchronous register copies between threads in
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Listing 27 Counting kernel implementation.

1 __global__ void CountingKernel(int* filterSegment, int segmentSize,
unsigned long long int* resultPtr)

2 {
3 int index = blockDim.x * blockIdx.x + threadIdx.x;
4 int count = index < segmentSize ? __popc(filterSegment[index]) : 0;
5
6 count += __shfl_xor(count, 16);
7 count += __shfl_xor(count, 8);
8 count += __shfl_xor(count, 4);
9 count += __shfl_xor(count, 2);

10 count += __shfl_xor(count, 1);
11
12 if ((threadIdx.x & 31) == 0) atomicAdd(resultPtr, count);
13 }

a warp. To sum the counts stored across all registers in a warp, threads invoke
the __shfl_xor function, which is specifically intended to facilitate a butterfly
reduction pattern (see Section 2.7.2). The reduction requires log2(32) = 5 warp
shuffle operations, after which point the combined total matches for the warp is
replicated in every warp thread. Finally, the first thread in the warp uses an atomic
function to add the warp’s total count to the stream specific global count, stored
in device memory, which is retrieved by the host on completion of the execution
stream, and sent via 0MQ to the client application. This provides high throughput,
as 3.5 devices support high speed global atomics [81].

Once the filter counts for all nodes have been processed and stored, the tree is used
to generate vertex data for the render process. This process is discussed in the
following subsection.

8.2.4 Rendering Graphs

The capture visualisation control renders a set of stacked graphs (one for each
filter/metric) over a given time interval and at a specific render level. The time
frame defaults to the capture length, but may be adjusted by drilling down into
subsections of the capture; the render level is initially determined heuristically,
but may be increased or decreased through keyboard shortcuts.

The graphs displayed by the control are rendered using separate vertex arrays that
are generated on demand (when the render level or time frame is changed), using
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Figure 8.7: Rendering point, line and area graphs from an array of vertex data.

LINQ (Language-Integrated Query) expressions to process the metric values con-
tained within the time tree [56]. Vertex data is only generated for visible portions
of the graph, and thus as the render level becomes more fine grained, the size of
the section of the capture that is processed is simultaneously reduced. This en-
sures the number of data requests and storage space required per render does not
scale exponentially as the render level is decreased, similarly to node population
as discussed in Section 8.2.2.

Each graph is encoded as an array of two dimensional Cartesian coordinates of the
form (x, y), where x is the node’s start time and y is an unscaled metric value con-
tained by the node. Each vertex array encodes the y values for the graph, using
the value’s index offset in the array to infer an x value. These coordinates may
be rendered as either a scatter plot, a line graph, or a solid graph through simple
GLSL vertex and fragment shaders, by varying the draw function and array stride.
These graph types are illustrated in Figure 8.7. The vertex shader applies a simple
world transformation in order to position and scale the generated vertices for dis-
play, while the fragment shader simply applies a graph specific colour to each pixel.
Graph render order, draw type and graph colour can be easily adjusted at this
point, as these adjustments do not require vertex data to be reprocessed.

8.3 Capture Distillation

Capture distillation is a process that repackages subsets of packets from large cap-
ture files into much smaller pre-filtered captures. Distillation is performed by the
main C++ server process to maximise read performance. It is invoked, however,
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Figure 8.8: Multiple selected packet ranges within the graph control.

from the .NET visualisation control discussed in the previous section, which sim-
plifies the selection of arbitrarily sized subsets of packets in large captures by al-
lowing highlighted sections, at varying render levels, to be marked using a hot key
(see Figure 8.8).

On invocation within the client process, each selected subset within the graph con-
trol is converted into one or more tasks, which are dispatched to the C++ distilla-
tion function through a 0MQ TCP socket. A task is composed of two offset-length
pairs containing index and byte ranges. The index range specifies the range of
packets contained in the task, while the byte range indicates the portion of the
capture in which the packets are stored. These ranges are derived from the index
files generated during classification. To simplify the server side process, tasks are
sized by the client such that they do not exceed the capacity of the read process’s
input buffers. Received tasks are processed one after another in sequence, and may
be broken down into three general processing steps: reading, filtering and writing.
A simplified overview of the process and its component steps is provided in Figure
8.9.

The first step of the process is performed in a dedicated I/O thread, and involves
buffering the relevant portion of the packet capture into memory. This is achieved
using the byte offset and length pair contained in the task specification. Once
loaded, the buffered data is passed to a subsequent thread where the remainder of
processing takes place. Using the supplied index range in the task specification, in
conjunction with the packet index file and filter results file, the process selectively
copies packets which passed the filter from the buffer to a new capture file, while
skipping over and ignoring those that failed. Once every packet index in the task
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Figure 8.9: Distillation process overview.

has been processed, the function begins processing the next task, continuing until
no further tasks remain. The server signals its completion to the client prior to
terminating, after which the produced capture can be analysed in most protocol
analysis suites. The client will optionally load the capture automatically in Wire-
shark on completion if requested in the GUI.

8.4 Summary

This chapter briefly investigated three example applications which apply the out-
puts of the classification system to facilitate simple but useful capture analysis
functions.

The first example application, described in Section 8.1, uses extracted field data
to create and display field value distributions, which can then be used to identify
the proportion of packets in a capture that use a particular protocol or field value.
The distribution is derived by an unsophisticated C# function, with the intention of
illustrating performance gains achievable by ad hoc CPU applications that apply
classification outputs.

The second example application, discussed in Section 8.2, uses index and filter
results to render an adjustable high level visualisation of the capture file using
OpenGL. The visualiser uses a tree structure, built using index and filter files, to
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hold detailed metrics of large captures. This structure is used to render high level
overviews of capture, supported by a CUDA kernel to quickly count filter results.

The final application discussed was the distiller function, which uses the visual-
iser, filter results and index files to generate cropped and pre-filtered captures.
This function helps to facilitate rapid analysis of large captures in existing protocol
analysis software by eliminating unnecessary packets, and trimming captures to a
manageable size.

Having described the design and implementation of the components within the pro-
cessing pipeline in some detail, the following part of the document evaluates and
discusses the performance of these components both collectively and in isolation.
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9
Testing Methodology

THIS part of the document discusses the performance results for the sys-
tem components discussed in Part III. This part is organised into three
chapters, inclusive of the current chapter, in order to divide discussion into

manageable, related segments with a logical progression:

• This chapter introduces the testing methodology, reports the system configur-
ation used, and describes the input programs and captures employed during
the testing process.

• Chapter 10 evaluates the performance of the CUDA-based classification ker-
nel in isolation. The classification kernel is considered separately, as it is the
most important component in the system and the main focus of this research.

• Chapter 11 investigates the performance of the end-to-end system, including
both the classification process (inclusive of both GPU and CPU components)
and the post processing functions which employ system outputs.

The current chapter begins by providing an overview of testing goals, sys-
tem configuration and the verification methods used. This is followed by
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an overview of the three packet captures used in testing and the nine filter
programs applied to them. The chapter concludes with a short summary.

9.1 Performance Criteria

The GPF+ classifier and its supporting system were evaluated with respect to
four general performance criteria (throughput, accuracy, efficiency and scalabil-
ity), which relate directly to the research goals (see Section 1.3.3). Flexibility and
usability are not included, as these were addressed through system design. The
approaches taken to evaluate the system based on these criteria are briefly elabor-
ated upon in the remainder of this section.

• Throughput was measured by timing the execution of various processes, and
extrapolating performance metrics from these records using the known size
and packet counts of the processed captures. Results were reported in mil-
liseconds for the CUDA classification kernel, and in seconds for the classi-
fication system. These timings were used to determine the number of pack-
ets processed per second (packet rate) and the volume of data processed per
second (data rate).

• The accuracy of the produced results were verified through the distillation
of smaller filtered captures using produced results. These were checked for
consistency using existing verified software (see Section 9.3).

• Efficiency was measured in terms of device resource utilisation and host mem-
ory overhead. Metrics relating to device performance were collected through
Nvidia Nsight [85], while host memory utilisation was measured by examin-
ing the peak working set memory of tested host processes through Windows
Task Manager [57].

• Scalability was assessed by testing nine filter programs of increasing com-
plexity, over three captures of increasing size (see Sections 9.4 and 9.5). These
results are subsequently compared to establish device size scalability with
respect to filter program complexity, and host side scalability with respect to
capture size.
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Table 9.1: Test system configuration (host).

CPU

Make Intel
Model Core i7-3930K
Cores 6

Base Frequency 3.2 GHz

RAM

Type DDR3 1600
Total Memory 32 GB

System Memory 24 GB
RAM Disk 8 GB

Operating System Windows 7 x64
PCIe Interface PCIe 2

Table 9.2: Technical comparison of test graphics card specifications.
GTX 750 GTX Titan

Manufacturer Gigabyte MSI
Version GV-N750OC-1GI 06G-P4-2790-KR

Micro-architecture Maxwell Kepler
Compute Capability 5.0 3.5

CUDA Cores 512 2688
Device Memory (MB) 1024 6144

Memory Type GDDR5 GDDR5
Core Base Clock (MHz) 1020 837

Memory Bandwidth (GB/s) 80 288
Release Price $119 $999
Release Date February 18th, 2014 February 21st, 2013

9.2 System Configuration

This section describes the hardware and software configuration used during test-
ing. Testing was performed using the system configuration shown in Table 9.1 [37]
and two separate graphics cards: a low-end Maxwell-based GTX 750 [82]; and a
high-end Kepler-based GTX Titan [80]. Both cards used unmodified 340.62 Geforce
drivers, acquired through the NVIDIA Geforce website1. The technical specifica-
tions of these cards is given in Table 9.2.

Testing used both SATA II HDDs and SATA III SSDs as storage mediums for
packet captures (see Table 9.3). Outputs were written to an 8 GB RAM disk in
system memory to avoid both unnecessary competition with the capture reading

1\url{http://www.geforce.com/drivers}
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Table 9.3: Drives used for capture storage and retrieval during testing.
HDD SSD [20]

Interface SATA II SATA III
Drive Various Crucial MX100

Model No. Various CT256MX100SSD1
Drive Count 4 2

Drive Capacity 1.5TB - 2TB 256 GB
Peak Read Speed ±120 MB/s ±500 MB/s

process and skewing of end results from poor write performance. The virtual RAM-
based drive provides high read and write performance, at the expense of a quarter
of available system memory. This is not typically necessary, as system outputs are
far less expansive than inputs, and are written in intermittent fragments on de-
mand to any specified drive, generating little contention. This configuration does,
however, reduce the likelihood of output processes interfering with achieved per-
formance.

9.3 System Verification

Verification testing was performed prior to other aspects of testing to ensure the
process produced accurate results. Verification testing was achieved through in-
ternal and external mechanisms, including Wireshark, post-processing visualisa-
tion and distillation functions, and a simple bit-string visualiser for low level filter
result checking (see Figure 9.1).

Initial verification was performed by comparing results generated by Wireshark to
those stored in filter results files. This involved comparing the number of packets
passed by the filters, as well as randomised low-level inspection of the permuta-
tion of accepted and rejected packets. The former ensured that the right number
of packets were classified, while the latter ensured they were stored in the correct
locations. This approach required testing against small files however, as larger cap-
tures could not be loaded successfully into Wireshark for comparison. In addition,
while the approach was useful in spotting major programming bugs, its utility was
diminished when attempting to verify hundreds of millions of records. As a res-
ult, this method was used for initial verification during development, while final
verification was provided instead by the visualisation and distillation components.
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Figure 9.1: Bit-string visualiser showing per-packet results of a filter results file.

The visualisation and distillation functions provided an easy means to extract
small (and electively pre-filtered) groups of packets from large captures using the
filter outputs of the system. These captures were lightweight enough to load and
filter in Wireshark without issue, providing a mechanism to inspect and compare
the contents of unfiltered and filtered captures. A selection of non-uniform results
were used to filter, extract and distil an assortment of sub-captures small enough
to be processed within Wireshark from each packet capture used. These distilled
captures were tested to ensure that (a) an equivalent Wireshark filter returned all
packets in the capture, and (b) the negation of the filter in Wireshark returned no
packets.

While this method is, ultimately, still based on sampling select portions of results,
and thus does not prove the absence of error, it demonstrates that filter results
are at least accurate over the tens of thousands of contiguous packets within each
sample. As this would be highly unlikely if the process had any significant tend-
ency toward misclassification or malfunction, it provides sufficient verification for
the approach employed.

9.4 Capture Files

Testing was performed using three packet sets, referred to alphabetically for sim-
plicity, the details of which are summarised in Table 9.4, as well as in Appendix C.4.



9.4. CAPTURE FILES 204

Figure 9.2: The Linux Cooked Capture pseudo-protocol header.

Table 9.4: Packet sets used in testing.
Packet Set A B C

Total Packets 26,334,066 260,046,507 338,202,452
Average Size 70 bytes 155 bytes 480 bytes
Average Rate 0.9 /s 15 /s 12,150 /s

File Size 2.1 GB 41.4 GB 156 GB
Duration 11 months 6 months 8 hours

Packet sets A and B store packets containing their original Ethernet frame head-
ers, while packets in set C employ Linux Cooked Capture pseudo-protocol headers
instead (see Appendix D.1). The Linux Cooked Capture format [130] provides a
standard format to record packets from multiple heterogeneous interfaces, and is
also used in cases where the link-layer header is either inconsistent or absent.
Cooked Capture headers contain the same two byte Ethertype field as Ethernet,
but place the field at byte 14 rather than byte 12 in the header [130]. An overview
of the Linux Cooked Capture header is shown in Figure 9.2.

9.4.1 Packet Set A

Packet set A contains packets collected via an Ethernet interface from a /24 net-
work telescope between the 1st of October 2009 and the 31st of August 2010 [39].
The majority of packets in this capture are unrequested TCP SYN packets, with
a small contingent of UDP packets and other packet types. As a result, the cap-
ture does not include much payload data, and thus packet sizes remain relatively
small. An overview of the capture, generated by the visualisation component from
system outputs, is shown in Figure 9.3. This is the only included capture that can
be loaded into Wireshark.
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Figure 9.3: Overview of Packet Set A.

9.4.2 Packet Set B

Packet set B is a moderately sized long term capture, consisting almost exclusively
of UDP and TCP DNS traffic, collected from an Ethernet interface between the 21st

of October 2010 and the 1st of May 2011. Capture B is just under twenty times
larger than packet set A (despite being collected over a shorter time period), due to
a higher average packet rate (≈ 16.6×A) and larger average packet size (≈ 2.2×A).
The capture is illustrated in Figure 9.4.

9.4.3 Packet Set C

Packet set C is a large and dense short term capture, collected between 3:56 PM
and 11:55 PM on December 2nd 2011, that contains a wide variety of protocols
captured from a fast live network. The capture was originally recorded as 1,600
separate 100 MB capture files, in order to manage analysis with existing CPU tools;
these were combined to form a single large capture in order to test the system’s
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Figure 9.4: Overview of Packet Set B.
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Figure 9.5: Overview of Packet Set C.

scalability to large capture files. An overview of the capture is provided in Figure
9.5.

While the capture contains only eight hours of recorded live traffic, it is more than
four times larger than capture B – again due to a significantly higher average
packet arrival rate ( ≈ 810× B) and larger packet size (≈ 3.1× B). These averages
are skewed upward by short (±10 minutes) intermittent bursts of SSH traffic, car-
rying significantly larger payloads; this is illustrated in Figure 9.6, which shows
the SSH spikes in isolation from other protocols, with a red line showing the cor-
responding average packet size.

9.5 Testing Programs

Testing was performed using nine different filter programs of varying complexity
and result cardinality. The listings for these programs are contained in Appendix
D. Programs have been grouped into three categories, or sets – referred to as set
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Figure 9.6: Average packet size (red line) superimposed over SSH packet count
(purple area).

A, B and C – which differentiate filters based on the types of results returned:
filter results, field values, or both. Programs within sets are numbered in order of
increasing complexity.

• Set A contains programs that return only filter results.

• Set B contains programs that return only field values.

• Set C contains programs that return both filters and field values.

Filtering requires kernels to read similar volumes of data to field extraction, but
consumes far less bandwidth when storing and returning results. By contrast,
however, field extractions require fewer operations than filtering to evaluate, as
they translate to a single coalesced memory write. Measuring the performance
of each function in isolation and in unison provides a means of identifying bottle-
necks in either function, and determining efficiency and performance scaling when
executing both operation types simultaneously.

Testing was performed using two versions of each program. The program used
while evaluating packet sets A and B uses Ethernet II as the link-layer protocol,
while the program for packet set C uses the CookedCapture pseudo-protocol in-
stead [130] (see Figure 9.2).

9.5.1 Program Set A

These three programs produce filtering results only, and are intended to test filter-
ing performance in isolation from field extraction.
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Listing 28 Program A1 kernel function.

1 main() {
2 filter ip = IP;
3 }

Listing 29 Program A2 kernel function.

1 main() {
2 filter tcp = TCP;
3 filter udp = UDP;
4 filter icmp = ICMP;
5 filter arp = ARP;
6 }

Listing 30 Program A3 kernel function.

1 main() {
2 filter icmp = ICMP;
3 filter tcp = TCP;
4 filter udp = UDP;
5 filter ftp_src = TCP.SourcePort == 21 || TCP.DestinationPort == 21;
6 filter smtp = TCP.SourcePort == 25 || TCP.DestinationPort == 25;
7 filter http = TCP.SourcePort == 80 || TCP.DestinationPort == 80;
8 filter ssh = TCP.SourcePort == 22 || TCP.DestinationPort == 22 ||
9 UDP.SourcePort == 22 || UDP.DestinationPort == 22;

10 filter dns = TCP.SourcePort == 53 || TCP.DestinationPort == 53 ||
11 UDP.SourcePort == 53 || UDP.DestinationPort == 53;
12 filter dhcp = UDP.SourcePort == 68 && UDP.DestinationPort == 67 ||
13 UDP.SourcePort == 67 && UDP.DestinationPort == 68;
14 filter dhcp6 = UDP.SourcePort == 546 && UDP.DestinationPort == 547 ||
15 UDP.SourcePort == 547 && UDP.DestinationPort == 546 ||
16 TCP.SourcePort == 546 && TCP.DestinationPort == 547 ||
17 TCP.SourcePort == 547 && TCP.DestinationPort == 546;
18 }
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Listing 31 Program B1 kernel function.

1 main() {
2 int proto = IP.Protocol;
3 }

Listing 32 Program B2 kernel function.

1 main() {
2 int proto = IP.Protocol;
3 int srcaddr = IP.SourceAddress;
4 int destaddr = IP.DestinationAddress;
5 int srcport = Ports.SourcePort;
6 int destport = Ports.DestinationPort;
7 }

Program A1 This program contains a trivial filter set that classifies all packets
against the IPv4 protocol. The generated program contains only a single pro-
tocol layer, and thus does not invoke protocol switching. A1’s kernel function
is shown in Listing 28. The complete program is provided in Appendix D.2.1.

Program A2 This program contains four filters that identify all TCP, UDP and
ICMP(v6) packets (over either IPv4 or IPv6), as well as all ARP packets. The
program produces two protocol layers, and requires a single protocol switch
from Ethernet to either IPv4 or IPv6. A2’s kernel function is shown in Listing
29. The complete program can be found in Appendix D.2.2.

Program A3 This program contains ten filters that primarily target protocols
on the transport layer of the protocol stack. In addition to TCP, UDP and
ICMP(v6) packets, it locates FTP, SMTP, HTTP, SSH, DNS, DHCP and DH-
CPv6 packets. The resultant program contains three separate protocol lay-
ers, and additional protocol switches between IPv4/IPv6 and their respective
transport protocols. Listing 30 shows the kernel function for A3. The com-
plete program source is available in Appendix D.2.3.

9.5.2 Program Set B

These three programs perform field extraction operations exclusively, and are in-
tended to evaluate this function in isolation.

Program B1 This program is a simple field extraction program that records the



9.5. TESTING PROGRAMS 211

Listing 33 Program B3 kernel function.

1 main() {
2 int ethertype = Ethernet.EtherType;
3 int tcpsrcport = TCP.SourcePort;
4 int tcpdestport = TCP.DestinationPort;
5 int tcpseqno = TCP.SequenceNumber;
6 int tcpackno = TCP.AcknowledgmentNumber;
7 int udpsrcport = UDP.SourcePort;
8 int udpdestport = UDP.DestinationPort;
9 int udplen = UDP.Length;

10 int icmptype = ICMP.Type;
11 int icmpcode = ICMP.Code;
12 }

IPv4 protocol field from the Internet layer of processed packet data. The pro-
gram requires two protocol layers, reading field data from within the IPv4
protocol layer. Similarly to A1, this program is primarily intended for com-
parison to other more complex field extraction programs. Listing 31 shows the
kernel function used in B1. The full program source can be found in Appendix
D.3.1.

Program B2 This program extracts each field of the IPv4 5-tuple (source address,
destination address, protocol, source port, and destination port). This pro-
gram uses fields from both the Internet and Transport layers of the protocol
stack (see Section 3.2), and thus uses three separate protocol layers in the
compiled program. B2 is the only program which uses 4 cache loads, using
a second load in the internet layer to extract IP address values. B2’s kernel
function is shown in Listing 32. The complete program source may be found
in Appendix D.3.2.

Program B3 This program is the most complex pure field extraction program,
recording ten fields from the Ethernet, TCP, UDP and ICMP protocols. Spe-
cifically, the program extracts:

• Ethernet EtherType.

• TCP source port, destination port, sequence number and acknowledge-
ment number.

• UDP source port, destination port and length.

• ICMP type and code.
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Listing 34 Program C1 kernel function.

1 main() {
2 filter ipv4 = IPv4;
3 filter ipv6 = IPv6;
4 int proto = IPv4.Protocol;
5 int nextHeader = IPv6.NextHeader;
6 }

Listing 35 Program C2 kernel function.

1 main() {
2 filter tcp = IPv4.Protocol.TCP || IPv6.NextHeader.TCP;
3 filter udp = IPv4.Protocol.UDP || IPv6.NextHeader.UDP;
4 filter icmp = ICMP;
5 filter arp = ARP;
6 filter ssh = ServicePorts.SourcePort.SSH ||
7 ServicePorts.DestinationPort.SSH;
8 filter dns = ServicePorts.SourcePort.DNS ||
9 ServicePorts.DestinationPort.DNS;

10 int srcport = ServicePorts.SourcePort;
11 int dstport = ServicePorts.DestinationPort;
12 int icmptype = ICMP.Type;
13 int icmpcode = ICMP.Code;
14 }

Like B2, this program uses three protocol layers. The kernel function used in
B3 is shown in Listing 33. The full program can be found in Appendix D.3.3.

9.5.3 Program Set C

The final three programs test programs which invoke both filtering and field ex-
traction processes.

Program C1 This program contains two filters targeting IPv4 and IPv6, and two
field extractions storing IPv4’s Protocol and IPv6’s Next Header fields. Like
B1, this program requires two layers to evaluate. The complete source for the
program can be found in Appendix D.4.1.

Program C2 This program is composed of six filters (four involving simple predic-
ates) and four field extractions. The program filters for TCP and UDP packets
in layer two, as well as ICMP, ARP, SSH and DNS packets in layer three. The
program additionally extracts the source and destination ports of TCP / UDP
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packets, as well as the type and code fields contained in ICMP packets. The
filter program source is provided in Appendix D.4.2.

Program C3 This program is the largest included, simultaneously evaluating all
ten filters performed in A3 and all ten field extractions performed in B3. This
allows for comparisons between the performance of these three programs,
and provides a means of demonstrating performance scalability to larger pro-
grams. The program executes over three protocol layers, similarly to both
A3 and B3. C3’s kernel function contains all definitions in Listings 30 and 33,
and is too long to list here. The complete source for the program can, however,
be found in Appendix D.4.3.

9.6 Summary

This chapter introduced and discussed the methodology, hardware configuration
and inputs used throughout classification kernel and system testing in the follow-
ing two chapters.

The chapter began by discussing the main performance criteria to be evaluated
during the course of testing in Section 9.1. Section 9.2 outlined the system soft-
ware and hardware configuration, including details regarding the GPU accelerat-
ors and storage devices used. Section 9.3 elaborated briefly on how results were
verified using the distillation post-processor and Wireshark to verify the accuracy
of generated results.

The final sections discussed the packet capture and classification program inputs
used during testing. Section 9.4 briefly described the three capture files used, and
Section 9.5 discussed the nine filter and field extraction programs against which
the capture files were processed.

The following chapter considers the performance of the classification kernel in isol-
ation from the rest of the system, while the subsequent chapter examines end-to-
end system and post-processor performance.
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Classification Performance

THIS chapter reports on the performance of the classification kernel described
in Chapter 6, using the performance analysis functionality supplied by
Nvidia Nsight 4.2 [85]. This discussion does not consider host side over-

head, which is discussed separately in Chapter 11. The remainder of the chapter
is structured as follows:

• Section 10.1 provides an overview of kernel testing, discussing the kernel test
configuration and collected results in general.

• Section 10.2 reports on the performance of the individual filtering programs
included in set A (see Section 9.4.1)

• Section 10.3 reports on the performance of the individual field extraction pro-
grams included in set B (see Section 9.4.2).

• Section 10.4 reports on the performance of the individual mixed programs
included in set C (see Section 9.4.3).

214
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Table 10.1: Kernel execution configuration.
GTX 750 GTX Titan

Buffers Size 128 MB 256 MB
Stream Count 4 4

• Section 10.5 compares the results from program sets A, B and C collectively,
in order to show and discuss observed scaling.

• Section 10.6 concludes the chapter with a summary.

10.1 Kernel Testing Overview

The classification kernel described in Chapter 6 was analysed on both GTX Titan
and GTX 750 graphics cards, using the nine programs introduced in Section 9.5
and the four captures listed in Section 9.4.

Tests were executed using a block size of 128 threads, which allows 16 blocks to ex-
ecute on each multi-processor simultaneously (the maximum supported on Kepler
GPUs). Kernels were configured to use four asynchronous streams of execution (see
Section 2.8.2) to improve occupancy and hide access latency, balanced to minimise
buffer memory utilisation. Higher stream counts do not seem to significantly im-
pact kernel performance, but do require additional host-side buffers to adequately
maintain in the current implementation.

Due to differences in available device memory, different buffer sizes were used
when executing on different devices (see Table C.2). The GTX Titan, which has
over 6 GB of available device memory, was configured to use four 256 MB buffers,
requiring 1 GB of device memory overall. The GTX 750, however, only has 1 GB
of device memory, and so uses four 128 MB buffers to provide room to hold system
outputs. A summary of this configuration is shown in Table 10.1.

10.1.1 Measurements

This section briefly discusses the validity of results. Each capture was processed
once in each execution configuration, and timed using the high precision perform-
ance analysis functionality provided by Nvidia Nsight. This has negligible impact
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on accuracy, however, due to the functionality of Nsight and the size of packet cap-
tures used. Specifically:

1. The timings provided by the Nvidia Nsight monitor [85] are highly stable and
not prone to significant variance, as all kernels were replayed (or repeated)
by Nsight ten times during the performance analysis process [85]. Each ker-
nel execution time reported by Nsight is thus already an average of multiple
iterations of the kernel.

2. Due to the size of the captures, in comparison to that of device memory, cap-
tures B and C required tens of iterations of the kernel to complete. Each of
these iterations was measured independently by the Nsight Monitor as an
internal repetition, which could then be averaged.

3. As timings are initiated only after files have been fully loaded, the measured
performance is less susceptible to variability introduced by OS file caching
(this is not the case for the encapsulating system however, where it can have
a dramatic impact due to the storage bottleneck).

10.1.2 Results Presentation

The tests performed in this chapter evaluate the performance of the classifier while
processing each of the nine filter programs defined in Section 9.5. Each test in-
cludes a high-level figure that shows the overall performance for each test, and a
table conveying aggregated metrics of each kernel invocation. These are discussed
below.

The figure shown for each test contains three separate graphs; a linear graph of
total kernel processing time (in seconds), and two logarithmic graphs showing the
achieved packet rate (in millions of packets per second) and data rate (in gigabytes
per second). All data rate estimations are adjusted to account for capture-specific
overhead that may otherwise inflate results; the data rate presented, therefore,
reflects the amount of packet data (rather than capture data) processed, calculated
by subtracting the combined global and record header lengths from the total cap-
ture size.

The table included with each test presents additional lower-level information relat-
ing to the execution of the individual kernels, rather than the process as a whole.
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The values reported are averages taken from all kernel invocations needed to pro-
cess a particular capture on a particular device. The results ignore metrics collec-
ted from the last kernel invocation for each capture, as these invocations process
partial buffers that could skew the results attained from Capture A (which uses
few repetitions). Each table includes seven different metrics, which bear some ex-
planation:

Packets The number of packets (in millions) processed by each kernel in each
stream.

Time (ms) The average number of milliseconds required for each kernel to com-
plete.

Time (σv) The standard deviation, in milliseconds, between all recorded kernel
timings. Kernels which processed fewer than three full buffers do not have a
standard deviation, and are instead marked with an asterisk (*).

Achieved Occupancy The average occupancy achieved between executed ker-
nels. This value is calculated by the Nsight analysis function as a percentage
of device resources[85].

SM Activity The percentage of execution time in which a Streaming Multipro-
cessor (SM) was actively processing a warp, averaged across all SMs. This
value is also calculated internally by Nsight[85].

GPU Serialization The percentage ratio of the number of instructions replayed
compared to the number of instructions actually issued [55].

Executed IPC The average number of discreet instructions executed per clock
cycle [85].

Some runtime aspects do not vary between programs and are thus not reported
individually. In all tests, each thread uses a total of 27 registers and each multi-
processor processes 16 blocks at a time. These values ensure optimal performance,
as each thread can support up to 32 registers per thread and still maintain full
occupancy, and each Kepler multiprocessor can support up to a maximum of 16
blocks.
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10.2 Filtering Programs

This section details the performance of the classification kernel while processing
three pure filter programs from program set A. Tests in this set do not record any
field information, and thus produce only bit-based filter results, which require very
little device-side bandwidth to store.

10.2.1 Program A1

The A1 program is a very simple program that never moves beyond the link-layer
protocol, and only produces a single result; it is used to benchmark best case per-
formance of classification, primarily for the purpose of comparison to other filter
programs. The full filter program used may be found in Appendix D.2.1. An over-
view of the performance results for program A1 are provided in Figure 10.1 and
Table 10.2.

The results displayed in Figure 10.1 show a good approximation of best case per-
formance, achieving comparable packet throughput across captures on each device.
As the packet rate is relatively unaffected by capture composition, the observed
data rate scales linearly relative to average packet size. Capture B contains twice
as much payload data per packet compared to capture A, and thus achieves twice
the throughput of capture A for processing the same number of packets. Similarly,
capture C accumulates over three times the volume of payload data per packet com-
pared to capture B, and thus achieves a data rate roughly three times higher than
that of capture B. Together, this shows that processing time is primarily bound by
the number of packets processed, and is largely unaffected by packet size. This is
expected, as all packets are cropped to uniform lengths prior to processing.

The performance metrics presented in Table 10.2 show that kernel execution time
demonstrates little variance between results, with a sub-millisecond standard de-
viation in all tests. In addition, both devices managed to maintain high overall
occupancy and multiprocessor activity. The GTX Titan achieved roughly six times
the packet throughput of the GTX 750, with slightly higher overall occupancy and a
significantly higher number of instructions executed per clock cycle. The GTX 750,
however, required negligible serialization and achieved slightly higher SM activity.
These differences are primarily attributable to differences between microprocessor
and memory architectures, and remain relatively consistent throughout all tests.
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Figure 10.1: Program A1 Performance Results

Table 10.2: Program A1 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 7.8 185 0.2 93.9% 99.7% 0% 1
750 B 7.8 185 0.2 93.7% 99.8% 0% 1

C 7.8 185 0.2 93.7% 99.8% 0% 1
GTX A 15.8 65 * 96.6% 97.2% 7.3% 2.5
Titan B 15.8 64 0.5 96.5% 98.4% 7.3% 2.5

C 15.8 64 0.6 96.4% 98% 7.3% 2.5
* - Insufficient Iterations
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Table 10.3: Program A2 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 6.4 361 0.4 94.8% 99.7% 0% 1
750 B 6.4 361 0.6 94.6% 99.7% 0% 1

C 6.4 362 0.6 94.6% 99.7% 0% 1
GTX A 12.8 127 * 97.4% 99.1% 7.1% 2.4
Titan B 12.8 127 1.4 97.3% 99% 7.1% 2.4

C 12.8 128 2.6 97.3% 99% 7.1% 2.4
* - Insufficient Iterations

10.2.2 Program A2

The A2 program classifies four separate filters that target both the Data-link and
Internet layers of the protocol stack. While more complex than A1, the program
does not actually interact with any Transport layer protocols, and thus does not
require the evaluation of expressions to determine the offset of a later protocol
(i.e. all protocols are treated as having a constant length). The full filter program
used may be found in Appendix D.2.2. An overview of the performance results for
program A2 are provided in Figure 10.2 and Table 10.3.

The results in Figure 10.2 show a similar pattern to that of program A1, with ker-
nels achieving roughly equivalent packet throughput on each device regardless of
actual packet capture composition, resulting in a data rate that correlates directly
with average packet size. The only significant difference is in overall achieved
performance, with the A1 program outperforming the A2 program by a factor of
just under 2.5 times. This scaling is in line with expectations, as the program A1
traverses twice as many layers and produces four times as many filter results as
program A2. The program displays high overall performance, producing 70 and
400 million distinct filter results per second on the GTX 750 and GTX Titan, re-
spectively. In keeping with the observed performance in program A1, the GTX
Titan outperforms the GTX 750 by close to a factor of six.

Table 10.3 indicates slightly higher variance between kernel execution times, which
is partially attributable to runtime pruning through warp voting. Both devices
achieved slightly higher occupancy, and the GTX Titan achieved higher SM activity
and lower serialization overall, at the expense of evaluating slightly fewer instruc-
tions per clock cycle. The GTX 750, in contrast, shows greater overall stability,
producing very similar metrics to those of program A1.
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10.2.3 Program A3

Program A3 is the final and most complex filter specific program. It contains ten
separate filters collectively utilising 29 independent comparisons between all eval-
uated predicates. The majority of defined comparisons operate on fields within the
Transport (3rd) layer of the protocol stack (see Section 3.2). As a result, the length
of the Internet layer protocol needs to be evaluated, adding extra work. The full
program specification may be found in Appendix D.2.3. The performance results
for program A3 are shown in Figure 10.3 and Table 10.4.

The performance results shown in Figure 10.3 are in line with expectations, with
an achieved packet rate close to one third of that achieved in program A2, despite
processing more filters, substantially more comparisons, and the necessary eval-
uation of protocol length fields. Unlike prior programs however, there is greater
variance in achieved packet rate between captures. This may be attributable in
part to runtime optimisations. For example, capture C is the only capture that
includes IPv6 packets, which requires not only more protocol evaluations per layer
in certain warps, but also doubles the number of protocol length calculations that
need to be performed within these warps. Capture B, by contrast, contains predom-
inantly UDP datagrams encapsulated in IPv4 headers, which allows many warps
to skip processing both the IPv6 protocol and the TCP protocol through warp vot-
ing. As captures A and C both contain an abundance of TCP packets, and capture
B contains very few, the kernel is able to optimise out TCP and IPv6 comparisons
at runtime more easily when processing capture B.

In addition to this, the results shown in Table 10.4 indicate that capture C was con-
figured to classify more packets per kernel iteration than in other captures. This
is a product of two factors. Firstly, the A3 filter program requires more storage per
packet than other filter specific programs, as it depends on headers in the transport
layer. This reduces the number of packets that can be contained in each buffer, and
thus the number that can be processed by each kernel. Secondly, and more import-
antly, Capture C employs a program that targets packets encapsulated within the
Linux CookedCapture [130] pseudo-protocol (see Section 9.4 and Appendix D.1).
While this program targets an EtherType field identical to standard Ethernet, it is
positioned differently in packet data (at an offset of 112 bits from the start, rather
than 96 bits). This slight difference in byte offset, in combination with the greater
memory requirements per record in the A3 program, and runtime size adjustments
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Figure 10.2: Program A2 Performance Results

Figure 10.3: Program A3 Performance Results
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to ensure proper alignment, allow the classification host process to use a slightly
larger grid size during processing.

Aside from this difference, Table 10.4 shows several other slight differences when
compared to previous tests. Firstly, the GTX 750 showed far higher variance
between kernel calls than the GTX Titan, and slightly lower overall occupancy
and SM activity. This appears to be due in part to starvation, as the supplied grid
sizes for both tests was comparatively small (particularly with respect to the GTX
750). In addition, the slight difference in packet count for capture C shows a signi-
ficant impact on SM activity, achieved occupancy, and the number of instructions
executed per cycle. This is most notable on the GTX Titan.

In summary, these observations indicate that in some more complex and memory
constrained cases, performance may be affected by both packet composition and
grid size.

10.3 Field Extraction Programs

The next set of evaluation programs test the performance of field extraction in
isolation. Field extraction is a simpler function than that of filtering, requiring
neither function-specific inter-thread communication, or post extraction result ag-
gregation. Storing field data is however significantly more bandwidth intensive
than storing filter data, as a single field record uses 32 times as many bits of band-
width per result. Similarly to the previous section, this section presents the results
of three programs ranging in difficulty from a single field extraction to a moderately
complex set of ten extractions.

10.3.1 Program B1

The B1 program includes a single operation that extracts the protocol field from
the IPv4 protocol header residing in the Internet layer of the protocol stack. As a
result, this program is more cache intensive than program A1 (which operates on
the Data-link layer only) as it requires two cache loads rather than one to complete.
The full filter program used may be found in Appendix D.3.1. An overview of the
performance results for program B1 are provided in Figure 10.4 and Table 10.4.
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Table 10.4: Program A3 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 2.2 335 7.0 92% 99.2% 0% 1
750 B 2.2 301 8.9 91.8% 99.3% 0% 1

C 2.3 400 6.9 94.4% 99.4% 0% 1
GTX A 4.3 122 2.5 91.8% 96.9% 6.4% 2.4
Titan B 4.3 112 4.0 90.8% 96.3% 6.4% 2.3

C 4.6 143 2.2 96.5% 93.0% 6.4% 2.6

Figure 10.4: Program B1 Performance Results
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Table 10.5: Program B1 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 5.6 227 0.3 94.3% 99.5% 0% 1
750 B 5.6 227 0.3 94.4% 99.6% 0% 1

C 5.6 227 0.3 94.3% 99.7% 0% 1
GTX A 11.2 84 2.3 96.1% 96.1% 7.6% 2.4
Titan B 11.2 81 0.9 96.4% 96.5% 7.6% 2.4

C 11.2 81 0.8 96.5% 97.0% 7.6% 2.5

Figure 10.4 shows a similar performance pattern to previous tests, with relatively
consistent packet rates across captures, and thus a data rate scaled in proportion
to average packet size. In terms of packet rate, program B1 falls between A1 (~245
million/s) and A2 (~100 million/s), although it is much closer in performance to A2
than A1. This is most likely a by-product of the additional cache load incurred by
operating on two layers, which only program A1 avoids.

With respect to the kernel metrics shown in Table 10.5, program B1 performed
similarly to program A1. While capture A shows a noticeably higher standard de-
viation (in combination with slightly lower overall performance in Figure 10.4), this
seems to be a result of anomalous noise during execution; capture A is particularly
small, requiring few iterations and a short execution cycle to completely process,
which can inflate the impact of system noise when performance is extrapolated
from results. With the exception of this performance anomaly, kernel performance
metrics fall in line with established expectations.

10.3.2 Program B2

Program B2 collects five fields from the network and transport layers of the pro-
tocol stack, collectively referred to as the IP 5-tuple. These fields include the
source and destination addresses, transport protocol from the Internet layer, and
the source and destination ports in the transport layer where relevant. The full
program specification may be found in Appendix D.3.2. The performance results
for program B2 are shown in Figure 10.5 and Table 10.6.

Figure 10.5 shows somewhat better results than that of program A3, but fall far
short of those achieved for A2. This is interesting, as B2 employs more cache loads
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Table 10.6: Program B2 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 2.2 225 0.8 94.3% 99.1% 0% 0.9
750 B 2.2 224 0.9 94.2% 99.1% 0% 0.9

C 2.4 242 0.8 94.4% 99.3% 0% 0.9
GTX A 4.5 83 0.5 96.3% 96.2% 7.1% 2.3
Titan B 4.5 83 2.1 96.2% 97.2% 7.1% 2.3

C 4.8 95 4.6 95.3% 91.9% 7.1% 2.2

than any other program in the set, but process fewer protocols in the transport
layer than other programs (as TCP and UDP ports are grouped as a single pro-
tocol). If performance was primarily determined by the number of cache loads, one
would expect B2 to show lower overall performance than other programs which
employ only three cache loads. This does, however, indicate that additional layers
do not have as pronounced an impact on performance beyond three layers.

Table 10.6 shows similarities with program A3, in that the volume of packet data
per record transferred to the device was large enough to produce different grid
sizes for the two programs. This produced slightly better performance on the GTX
750, but seemed to have a negative impact on the performance of the GTX Titan
in all areas but GPU serialization. The impact of this can be seen in the reported
packet rate for capture C, which is slightly lower than would otherwise be expected
in comparison to other results.

10.3.3 Program B3

Program B3 is the most complex field extraction specific program, collecting ten
field values from the Data-link, Internet and Transport layers of each packet. Of
these extracted fields, four are specific to the TCP protocol, three are specific to
the UDP protocol, and two are specific to the ICMP protocol. The full program
specification may be found in Appendix D.3.3. The performance results for program
B3 are shown in Figure 10.6 and Table 10.6.

Figure 10.6 shows that program B3 supplies marginally lower throughput than
program B2, despite extracting and storing twice as many field values from each
packet. This may potentially be the result of B2 employing an additional cache
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Figure 10.5: Program B2 Performance Results

Figure 10.6: Program B3 Performance Results
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load. The achieved packet rate shows similar variance to other programs operating
within the Transport layer, with the exception of capture C’s performance on the
GTX Titan, which performs favourably in comparison to previous tests.

Table 10.7 provides a potential reason for this anomaly; namely, a significant dif-
ference in grid size between the kernel processing capture C and the kernels eval-
uating other captures which, in contrast to the previous set of results, seems to
have improved overall performance on the GTX Titan. The GTX 750 results follow
a pattern more closely resembling previous Transport layer programs, seemingly
because the execution grid size remained constant for all captures on this device.

10.4 Mixed Programs

This section presents the results recorded for three programs that combine both
filtering and field extraction. As with the previous set, programs range in difficulty
from simple to moderately complex in order to show how performance is affected
by program complexity.

10.4.1 Program C1

Program C1 is the simplest program in the set, containing two filters and two
fields that fall within the IPv4 and IPv6 protocols. The program uses two layers to
encode all protocols. The full filter program used may be found in Appendix D.4.1.
An overview of the performance results for program C1 are provided in Figure 10.7
and Table 10.8.

Figure 10.7 shows that program C1 achieved a packet rate roughly mid-way between
that of program B1 and program A2, falling within the same range as other pro-
grams that operate on two layers. This provides some indication that the process
performs well when evaluating full programs, maintaining a packet rate in line
with previous results. This observation is corroborated by the metrics presented
in Table 10.8, which shows a similar performance pattern to simple programs in
previous tests, with no significant deviations from established norms.
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Table 10.7: Program B3 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 1.9 213 2.1 93.5% 98.9% 0% 0.9
750 B 1.9 194 3.5 93.4% 98.9% 0% 0.9

C 1.9 224 3.1 94.1% 99% 0% 0.9
GTX A 3.7 84 1.5 94.7% 91.5% 6.5% 2.1
Titan B 3.7 78 2.1 93.9% 92.6% 6.6% 2.1

C 4.8 96 1.6 95.6% 90.6% 7.1% 2.2

Figure 10.7: Program C1 Performance Results

Table 10.8: Program C1 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialisation IPC

GTX A 4.6 222 0.3 94.4% 99.6% 0% 1
750 B 4.6 223 0.5 94.4% 99.6% 0% 1

C 4.6 223 0.4 94.4% 99.6% 0% 1
GTX A 9.2 81 0.5 96.1% 95.7% 7.5% 2.4
Titan B 9.2 81 0.8 95.8% 97% 7.5% 2.4

C 9.2 81 0.9 95.9% 97% 7.5% 2.4
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Table 10.9: Program C2 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialization IPC

GTX A 3.3 362 2.0 94.3% 99.4% 0% 0.9
750 B 3.3 356 0.9 94.6% 99.4% 0% 0.9

C 3.3 361 4.9 94.4% 99.5% 0% 0.9
GTX A 6.5 140 1.1 96% 94.5% 6.7% 2.3
Titan B 6.5 136 1.1 96.2% 94.2% 6.7% 2.4

C 6.5 134 2.7 95.9% 94.3% 6.7% 2.4

10.4.2 Program C2

Program C2 contains six filters (of which four are simple predicate strings) and
four field extractions that target protocols on the Data-link, Internet and Transport
layers of the protocol stack. The program makes no distinction between TCP and
UDP packets, and processes their service ports collectively within a single pseudo-
protocol definition, similarly to program B2. Classification performance results for
program C2 are provided in Figure 10.8, while Table 10.9 tabulates the metrics
relating to the execution of individual kernels.

The per packet classification performance of program C2 falls close to, and roughly
between, that of program B2 and B3, and outperforms program A3 by an average
margin of over 30%. While the program performs comparably overall to similar
three-layer programs, fitting previous observations, the typical variance in per-
formance between individual capture sets compared to other three layer programs
is noticeably less pronounced. With respect to kernel metrics, program C2 behaved
comparably to previous programs, with high overall occupancy and SM activity,
and low standard deviation. The GTX Titan achieved a slightly higher occupancy,
while the GTX 750 achieved higher overall multiprocessor activity.

10.4.3 Program C3

Program C3 is the most complex program overall, being composed of all operations
from both the filter-intensive A3 program and the field-intensive B3 program. This
makes the program particularly useful for evaluating how throughput scales with
added program complexity, as the performance of each component program has
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Table 10.10: Program C3 Kernel Performance
Overview Performance Metrics

Packets Time Achieved SM GPU Executed
(Millions) ms σv Occupancy Activity Serialization IPC

GTX A 1.2 219 4.9 91.3% 98.4% 0% 1
750 B 1.2 189 6.1 90.9% 98.4% 0% 0.9

C 1.3 254 5.0 93.5% 98.7% 0% 1
GTX A 2.4 84 1.5 85.1% 93.7% 6.3% 2.4
Titan B 2.4 75 2.8 85.2% 94% 6.4% 2.3

C 2.5 90 3.7 91.0% 95.6% 6.3% 2.6

been established in isolation. Performance results for the program are given in
Figure 10.9, while kernel metrics are displayed in Table 10.10.

Despite the complexity of the program, C3 achieves a promising packet throughput
lower than, but still comparable to, that of program A3. For instance, while the
total time required to process capture C against both programs A3 and B3 on the
GTX Titan was slightly over 17.3 seconds, when combined into a single program
these same operations took only 12.1 seconds (only 1.6 seconds longer than A3
on its own). This supports the hypothesis that performance is more significantly
influenced by the number of independent layers (and thus distinct cache loads)
than by the number of filters evaluated or values extracted.

With the exception of lower than average occupancy, the presented kernel metrics
are generally comparable to prior complex programs. The decreased occupancy
may be partially attributable to the significantly increased number of memory
transactions serviced per packet, due to the number of field and filter results eval-
uated. Decreased occupancy may also be related to the small grid size used; this
could be improved on the GTX Titan (by using more execution streams of larger
buffers), as it has surplus memory capacity far exceeding the GTX 750.

10.5 Performance Evaluation

Having concluded the presentation of results on a test by test basis, this section
provides an evaluation of these results collectively, focussing predominantly on pro-
gram scalability. To aid in this evaluation, Figure 10.10 plots the average packet
throughput (in million of packets per second) and effective computed data rate (for
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Figure 10.8: Program C2 Performance Results

Figure 10.9: Program C3 Performance Results
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Figure 10.10: Average packet rate per test program, in decreasing order of per-
formance.

64 byte packets, in Gbps) for each test and device, in descending order of perform-
ance, using a logarithmic y-axis.

The figure supports the hypothesis that throughput is primarily correlated with
layer count, with performance declining significantly between programs with dif-
fering numbers of layers. Performance declined only marginally, however, with
respect to different volumes of filter and field extraction operations, indicating im-
proved scaling to larger and more diverse programs. Consider, for example, the
packet rates of A1, B1 and C1: the throughput of A1 is almost twice that of B1,
while B1 is only about 20% faster than C1. This is significant because A1 and B1
differ by one in terms of layers processed, but are otherwise comparable in terms
of work performed: A1 produced 1 filter while B1 produced 1 field. In contrast,
programs B1 and C1 share the same number of layers, but have very different
operation counts (C1 processes 2 field and 2 filters, double that of A1 and B1 com-
bined). The figure also shows that performing A3 and B3 at the same time is 50%
more efficient than performing these operations separately. This provides an indic-
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ation that in programs with similar layer counts, performance scales sub-linearly
with respect to the number of protocols, filters and fields processed (i.e. it is more
efficient to process multiple protocols in a single kernel than it is to process them
separately).

The performance discrepancy between A1 and B1, which differ only in the number
of cache loads performed, seems to be due to added global memory overhead res-
ulting from the cache function. Most results seem to support this observation with
the noted exception of B2, which is both the fastest performing three layer pro-
gram, and the only program to employ a fourth cache load. While further testing is
required to be certain, it seems from results that the higher ratio of computational
work to memory transactions helps to hide memory transaction overhead as filter
sets scale in size, thereby limiting the impact of memory contention and access
latency overhead in more complex programs.

Long complex predicates also appear to have an appreciable impact on perform-
ance, as evidenced by program A3. This is likely tied to how predicates are evalu-
ated, as each predicate atom must be stored in the gather process and subsequently
loaded from coalesced (but still comparatively slow) global memory. The process
used to store filter results during the gather process is particularly bandwidth inef-
ficient, as only the first thread in each warp actually writes data to device memory
(see Section 6.7.2). All other threads are left idle, wasting bandwidth. This was
done for both simplicity and to avoid over-utilising register resources, but could
be improved by utilising either spare registers or shared memory as a temporary
store. This would allow multiple iterations to be written in a partially coalescing
pattern to device memory at a later point in execution.

A final aspect of execution, notable in Figure 10.10, is the comparable performance
of the GTX 750 and GTX Titan. In all instances, the GTX Titan was just over
half an order of magnitude (5x to 6x) faster than the GTX 750. As the GTX Titan
contains 5.25x as many cores as the GTX 750, this performance ratio follows the
comparative computational resources of the devices quite closely.

10.6 Summary

This chapter reported on results collected from the CUDA based classifier in isola-
tion from other system components using Nvidia Nsight 4.2. Performance analysis
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was performed using nine separate programs, subdivided into three distinct cat-
egories: filtering programs, field extraction programs and mixed programs.

Section 10.1 provided an overview of the testing performed, relating how measure-
ments were taken and describing how results were presented. Performance results
and execution metrics were subsequently provided for each program in each set
and briefly discussed in Sections 10.2, 10.3 and 10.4 respectively. Section 10.5 con-
cluded the chapter by comparing all collected results, indicating that the classific-
ation process scales to process additional filters and fields relatively well, but does
not scale well with respect to the number of layers used. This was primarily attrib-
uted to the expected poor performance of global memory, although the correlation
became less clear as filter programs grew in complexity.

Device performance results were generally promising, showing high device oc-
cupancy and activity, limited serialisation and relatively consistent performance
(with standard deviations often below a millisecond). Performance across devices
was also shown to scale relative to the number CUDA cores available, although
differences in multiprocessor architecture had some additional impact on achieved
performance. Specifically, Maxwell architecture achieved higher overall occupancy
and utilisation in most tests, and did not suffer from instruction serialisation.

The following chapter investigates the performance of the end-to-end classification
process, including CUDA classification, capture buffering and indexing operations,
as well as post-processor functions.



11
System Performance

THIS chapter investigates the performance of the complete capture processing
system, inclusive of capture buffering, indexing and classification func-
tions. System testing is divided into two subsections that consider pro-

cessing throughput and host resource utilisation respectively. This chapter also
investigates the performance of the post-processor components, which apply the
outputs generated by the system within the contexts of specific applications. The
chapter contains the following sections:

• Section 11.1 evaluates and discusses the throughput of the end-to-end classi-
fication system using a variety of input and processing configurations.

• Section 11.2 evaluates the memory utilisation of the classification system,
and the storage requirements of output files.

• Section 11.3 examines the performance of each of the post-processing func-
tions, and briefly discusses the implications of results.

• Section 11.4 concludes the chapter with a summary.

236
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11.1 Processing Throughput

This section reports on the capture processing rate achieved using the system (in-
clusive of initialisation, memory allocation, capture reading, indexing, classifica-
tion, and output generation). Inputs for this evaluation include the three captures
previously described in Section 9.4. These captures vary significantly in size and
thus processing time; for the purposes of comparison, collected timings are con-
verted using the known capture size into an achieved packet and data rate, in
packets/s and MB/s respectively.

The system was tested on both the Nvidia GTX 750 and the Nvidia GTX Titan (see
Appendix C) using five different capture buffering configurations in three different
execution modes. The purpose of these tests is to show how GPU device power,
execution modes and storage mediums affect system performance. In addition, the
tests are intended to evaluate how performance scales when using multiple files
sources, and how this compares to a comparable RAID 0 (Striped) medium.

11.1.1 Testing Configurations

Performance testing was relatively broad, covering 90 different unique configura-
tions timed over a combined total of 900 iterations, processing over 17 terabytes of
capture data collectively. Each unique combination of GPU device, packet capture,
storage medium and function was executed and timed ten times and subsequently
averaged to derive the reported result. The target capture was cycled between
every test to prevent disk caching from artificially inflating processing speed; as
the combined size of these captures is just under 200 GB, captures are purged from
host cache by the time they are reprocessed. All outputs are written to an 8 GB
RAM disk for consistency and in order to minimise interference from the output
file writing process, which could otherwise artificially inflate processing time.

An overview of the system configuration can be found in Section 9.2 or Appendix C.
The capture buffer configurations used are summarised in Table 11.1 and described
below:

HDD x 1 Captures are read from a single HDD source.
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Table 11.1: Capture buffering configurations.
Drives Interface Striped Mirrored Identical Unused

HDD x 1 1 SATA II No No – No
HDD x 4 4 SATA II No Yes No No
SSD x 1 1 SATA III No No – Yes
SSD x 2 2 SATA III No Yes Yes Yes

SSD RAID 0 2 SATA III Yes No Yes Yes

Table 11.2: Execution configurations for end-to-end system testing.
Execution Configuration Classify on GPU Index on Host GPF+ Program

Filter Yes No C2
Index No Yes None
Both Yes Yes C2

HDD x 4 Captures are read from four unstriped HDD file mirrors simultaneously.
Drives vary by make, model, capacity and level of prior utilisation.

SSD x 1 Captures are read from a single SATA III SSD source.

SSD x 2 Captures are read from two unstriped SATA III SSD file mirrors. Drives
share identical make, model and capacity, and were both otherwise unused.

SSD RAID0 Captures are read from software managed RAID 0 array of two striped
SATA III SSD drives, which were otherwise unused.

Testing was performed in three distinct execution configurations that vary the
work done by the process. These configurations are summarised in Table 11.2.
The use of program C2 in this testing (rather than the more complex C3 program)
was motivated by the ratio of output volume (particularly with respect to capture
C) to available output space in RAM disk. Storage utilisation is discussed in more
detail in Section 11.2.

The results of system performance testing are presented in Figures 11.1 and 11.2,
for the GTX 750 and GTX Titan respectively. Results have been converted to MB/s
for the purpose of normalisation. In addition to these graphs, Figures 11.3 and
11.4 shows the total processing time (in seconds) and the standard deviation (in
milliseconds) between all iterations of a particular test. The following sections
discuss various aspects of measured performance, using these graphs for reference.
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Figure 11.1: Average capture processing speed using GTX 750

Figure 11.2: Average capture processing speed using GTX Titan
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Figure 11.3: Total capture processing time, in seconds.

Figure 11.4: Standard deviation of capture processing speed, in milliseconds.
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11.1.2 Execution configuration

Figures 11.1 and 11.2 show that system performance scales roughly in line with
the performance of the input source, with only minor variations between capture
inputs (discussed in Section 11.1.3). The process is relatively unaffected by other
aspects of the configuration, such as the GPU used.

There was no significant difference between configurations using the GTX 750 and
those using the GTX Titan, despite prior measurements showing that the latter
outperforms the former by close to a factor of six (see Section 10.5). Furthermore,
these results are comparable to index-only results which do not utilise the GPU at
all. This indicates that GPU performance was not a bottleneck during execution,
with even the comparably slow GTX 750 being capable of outperforming the fastest
storage medium used.

Similarly, the combination of functions performed during processing (filtering, in-
dexing or both) showed negligible difference in terms of achievable performance,
with all variations showing speeds consistent with the storage medium used. Thus,
like the GPU device, the combination of functions employed does not present a bot-
tleneck to system performance on any of the storage mediums used.

11.1.3 Capture size

This section briefly evaluates how capture size affects performance. Results in-
dicate that while captures B and C (which span 41 GB and 156 GB, respectively)
perform consistently well in each test with only minor variations between them,
capture A (which spans 2.1 GB) generally performs far worse. This is most notice-
able in results which employ filtering, and seems to be exacerbated when using
the GTX Titan. This is partially a product of setup time being a more significant
component of processing time for small captures, and partially a result of the ra-
tio of buffer allocations to buffer usage. Allocation of large memory segments is a
somewhat expensive but once-off process, and is most noticeable when processing
small captures with large buffers. As the GTX 750 uses smaller buffers than the
GTX Titan, less memory is allocated during setup, which allows the GTX 750 to
perform more efficiently in these edge cases. It is least noticeable during index
processing, as indexing uses substantially smaller buffers that are less expensive
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to allocate. This performance trade-off is in-line with expectations, as the design
goals prioritised efficient processing of large captures over small captures.

11.1.4 File source

The recorded average performance correlates most significantly with the band-
width of the file source, and indicates that achievable throughput is bottlenecked
by file buffering in all tested configurations. The file mirroring approach performs
surprisingly well overall, facilitating close to (and sometimes exceeding) RAID 0
performance when utilising identical SSDs, but without the need for similar drives
or striped drive formatting. Captures are also natively mirrored and thus far more
fault tolerant than a RAID 0 array, as the data is not lost if one drive fails. It
also easily incorporates additional ad hoc mirrors to files from any source medium,
which is not possible with a low-level striping approach. This is possible because
capture files are always processed sequentially in their entirety; if access were
random, RAID 0 would significantly outperform mirroring as mirroring would be
unable to efficiently break down and interleave each random read operation.

While the mirroring approach is only an efficient option for simple file streaming,
it is seemingly sufficient within this context, easier to setup and adjust than a
true RAID 0 array, and substantially more flexible with respect to hardware. This
comes at the expense of increased storage requirements, which scale by the number
drives used (similar to a RAID 1 array). While this provides redundancy in case of
drive failure, the associated cost of this redundancy when using many similar and
expensive drives may compare less favourably to a true RAID 0, which can better
utilise the available space.

11.1.5 Results stability

The standard deviation between iterations for each test shown in Figure 11.4 is
relatively small, ranging between the extremes of tens of milliseconds to several
seconds processing time, in contrast, ranged from 4 to 1,400 seconds (23 mins),
depending on capture size (see Figure 11.3).

Standard deviation was typically highest when using a single HDD drive for filter-
ing, and generally lowest when performing indexing from a single SSD. Standard
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deviation does not correlate significantly with capture size or processing time, but
rather seems to be primarily the product of operating system overhead and ran-
dom drops in disk performance not directly related to the application. Instances
where the standard deviation result is high typically correlate with result sets con-
taining only one or two outliers. As a case in point, while the standard deviation
for filtering capture A from a single HDD on the GTX Titan was over 5 seconds,
eliminating a single outlier from the calculation – which reported a time twice as
long as all other iterations – results in a standard deviation of only 97 milliseconds.
Tests with higher standard deviations are therefore not indicative of high variab-
ility between all ten executions, but rather result from a small subset of outliers
that, either due to buffer performance or resource availability, failed to perform at
the same rate as other iterations.

Provided drive performance remains consistent, these results indicate that system
throughput is quite stable and predictable.

11.2 Resource Utilisation

This section reports on system resource utilisation during capture processing. The
classification process did not interfere with or slow other processes, and maintained
a low, relatively consistent CPU load of roughly 2% ~ 3% across all tests. Memory
utilisation and file size varied more widely, and are discussed in greater detail in
the remainder of this section.

11.2.1 Memory Requirements

Figure 11.5 shows the achieved steady-state peak working memory utilisation for
the system process (as measured by Windows Task Manager) for each of the nine
filter programs listed in Section 9.5, as well as a control test where only indexing
is performed. Measurements were taken when using 128 MB buffers and 256 MB
CUDA packet buffers, correlating to the buffer sizes used in other tests by default
for the GTX 750 and GTX Titan respectively. All tests used packet capture C, due
to its comparatively large size, and were performed using four streams on the GTX
Titan. This does not limit the value of results, as host side memory allocations are
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Figure 11.5: Peak working memory against buffer size for different configurations.

not determined by inspection of either capture size or target device, but by function,
filter program, and combined CUDA buffer size (i.e. stream count × buffer size).

The results in Figure 11.5 confirm that memory utilisation is primarily determined
by the specified buffer size, with very little variation evident between the simplest
and most complex filter programs. This lack of significant variance is expected, as
the system process dynamically scales the number of packets evaluated per stream
to fit within the specified buffer size, using information in filter program to determ-
ine per-packet memory requirements. As the process uses four streams, with each
stream triple buffered on the host, the process allocates memory slightly more than
12 times the specified buffer size (1536 MB for 128 MB buffers / 3072 MB for 256
MB buffers). It is thus possible to significantly reduce memory requirements by
reducing either the buffer size, the number of streams, or the number of buffers
per stream. The remainder of allocated space is comparatively minor, and is at-
tributable to system and indexing overhead, as well as output buffers.

11.2.2 Storage Requirements

The system produces four output file types during the course of processing, which
are summarised in Table 11.3. Figure 11.6 shows the uncompressed size of each of
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Figure 11.6: Output file size by source capture and type.

Output Files Produced By Scales With Number Created
Packet Index Indexer Packet Count 1 per Capture
Time Index Capture Duration 1 per Capture

Filter Results Classifier Packet Count 1 per Filter
Field Values Packet Count 1 per Field

Table 11.3: Overview of output files.

these file types in comparison to the size of the capture that produced them. With
the exception of the time index file, all output files scale linearly relative to packet
count; the time index file instead scales linearly with capture duration, as detailed
below. Indexing produces a single file of each type, while filtering creates a unique
file per individual result.

The following list discusses each of the output file types in turn:

• The packet index file, consisting of 64-bit records, stores the offsets of 217

(131,072) packets per MB. This is the most expensive single file in terms of
storage space for the majority of captures, scaling inversely in comparative
storage efficiency with respect to average packet size. In comparison to raw
capture size, the packet index typically consumes one to two orders of mag-
nitude less space.
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• The time index file stores a single 64-bit index file offset per recorded second
for a given capture file, and thus requires just over 600 KB of storage per day,
or 240 MB per year. Capture A’s extremely low packet arrival rate and long
duration thus requires a significantly larger time index file (220 MB) than
that of capture C, which spans a few hours despite its size, and thus requires
only 200 KB of storage.

• Field files are comprised of 32-bit records, and thus achieve twice the packet
density per MB compared to the packet index file. As a separate field file is
required for each extracted field however, overall disk space utilisation can
become dominated by field files if large numbers of fields are returned by a
program. Indeed, due to the size of these files, program C3’s outputs could
not be contained within the limited capacity of the RAM disk used in system
testing; the field files generated by this program when processing capture C
required nearly 13 GB of storage and were responsible for over 80% of the
total space required for all files generated by the program. In contrast, pro-
gram C2 produced 7,982 MB of output data when processing capture C, which
just fit within the maximum capacity supported by the RAM disk (8 GB).

• Filter files consist of single bit records, requiring 32 times less storage space
than field files generated from the same capture – 223 (8,388,608) packets per
MB specifically. Filter files are highly efficient with respect to storage space
in comparison to other file types; even in the worst case, filter files were well
over three orders of magnitude smaller than the original capture file.

11.2.3 Performance Comparison

This section provides a simple comparison between the system and Wireshark in
order to afford some context for collected performance results.

The comparisons are made on the basis of metrics relating to the processing time
per capture, achieved data rate, and peak memory utilisation. The measurements
taken relating to Wireshark reflect the time taken and memory utilised while open-
ing each capture. These are compared to the measurements collected for the system
process while processing program C2.

Captures B and C are far too large to be contained within host memory, and could
only be partially processed within the Wireshark GUI. As a result, metrics for
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Figure 11.7: Comparison between Wireshark and system performance, showing
processing time, data rate and peak working memory utilisation by capture file.

the Wireshark GUI relating to these captures were extrapolated from partial res-
ults, and should therefore be treated as rough estimations only. The comparative
processing times, data rate, and peak working memory utilisation metrics when
operating on captures stored on a striped SATA III SSD array are shown in Figure
11.7.

The results show that the classification system performed between 300 (capture
C) and 900 (capture B) times faster than Wireshark estimates, and just under 700
times faster than the only verified time (capture A). In addition, memory utilisation
was substantially lower than Wireshark in all tests, and did not scale with respect
to capture size.

11.3 Post-processor Performance

This section investigates the performance of the post-processor functions described
in Chapter 8. These are ancillary functions that apply the outputs generated by
the classification process, and have been included primarily as working proof-of-
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concept applications of classifier results. These results are included to show how
generated system outputs perform when used as inputs to external ad hoc systems.

11.3.1 Filter Result Counting

The filter result counter is a simple GPU accelerated function provided by the C++
server process, which sums the number of ‘1’ bits in a filter results string in order to
determine how many packets passed a particular filter in a given results segment.
The function is used to generate metrics and to visualise filter results (see Section
8.2.3.3). This section shows the performance of the CUDA function in isolation, as
timed by the performance analysis functionality in Nvidia Nsight 4.2.

The performance of the function was measured while counting synthetic arrays
of random binary data. The amount of data processed was incremented from 2
KB (16,384 packets) to 512 MB (232 packets) by powers of two; each data volume
configuration was subsequently evaluated on both the GTX Titan and GTX 750
graphics cards listed in 9.2. Results were verified on the host to ensure accuracy.
Figure 11.8 shows the time taken in milliseconds, and the resultant count rates
achieved in billions of filter results per second, for each configuration; the figure
uses a logarithmic axis for both graphs.

The counting mechanism demonstrates an extremely high throughput, ranging
from around five billion filter results per second for 16,384 packets (2 KB) to 700
billion and over for sets equal to or larger than 33.5 million results (4 MB) on the
GTX Titan. The GTX 750 outperforms the GTX Titan for smaller sets equal to or
less than 32 KB (262,166 records), but gradually scales down to slightly under one
third of the GTX Titan’s performance for segments of 4 MB or larger. Given that
the GTX Titan has over five times as many CUDA cores as the GTX 750 however,
this indicates significantly better overall efficiency and performance on Maxwell ar-
chitecture. This observation is supported by captured performance metrics, which
show significantly lower serialisation and higher average instructions per warp
when using the GTX 750.

The counting throughput achieved is substantial, taking just 5.5 ms and 18.5 ms to
count 512 MB of results on the GTX Titan and GTX 750, respectively. For context,
a complete set of filter results from capture C only spans around 40 MB, and takes
around 500 μs and 2.3 ms to process on these respective cards. Put differently,
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Figure 11.8: Achieved packet count rate in billions of packets per second by filter
data processed.

if a capture of similar density per MB to capture C produced 512 MB worth of
results for a single filter, the capture would approximate to 2 TB of packet data,
and relative throughput of the counting mechanism with respect to the capture
would exceed 360 TB/s.

The high efficiency of this function, in conjunction with the small size of filter files,
renders filter counting virtually instantaneous from a user perspective for all cap-
tures containable on contemporary commodity storage mediums. This is useful for
capture analysis by accelerating the process of calculating arbitrary capture met-
rics, based on the results of filtering. This function is used as key component in
capture and filter visualisation discussed in the next section.

11.3.2 Capture Graph Construction

This section reports the recorded performance of the C# based capture visualiser
(see Section 8.2), focussing specifically on the time required to construct and popu-
late the internal tree data structure, which generates and organises the vertex data
of each included graph using the files generated by the classification system. Once
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Figure 11.9: Time in milliseconds to construct and populate the capture graphs
internal data structure, by filter count and capture.

constructed, graphs are easily and rapidly rendered directly from system memory
using OpenGL shader programs. This function includes all necessary memory al-
location, index and filter file access, and GPU accelerated filter counting performed
within the visualiser.

Figures 11.9 and 11.10 show, respectively, graphs of the time taken in milliseconds
to construct the internal data structure, and the total cumulative system memory
used by the C# Visualiser and the external C++ Server (which provides counting
functionality through a TCP socket connection). Results are shown for all three
captures listed in Section 9.4, using three filter configurations: no filters, five filters
(program A2) and ten filters (program A3).

As shown in Figure 11.9, graph construction time varied between tens of milli-
seconds to roughly two and a half seconds, depending on the size of the time index
file and the number of filters processed. When no filters were present, processing
time and memory utilisation was loosely proportional to the capture time span;
capture A, which has the longest duration but least number of records, requires
significantly more processing time and memory than capture C, which spans a far
shorter interval but contains nearly 13 times as many records. This is a result of
holding the time index file permanently in system memory for fast access; as the
size of the time index scales with duration at a rate of around 240 MB per year (see
Section 11.2.2), there is little concern of over-utilisation of system memory, even
for decade long captures. As the filter counts are increased however, the process is
forced to parse and evaluate more filter data, gradually slowing the processing of
captures relative to filter file size.

While visualiser memory utilisation follows a similar trend, it does not expand pro-
portionally to processing time, as processed filter counts require only a single in-
teger of storage per render unit, and this unit varies depending on capture length.
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Figure 11.10: Peak working memory utilisation for the visualisation process and
server process during graph construction, by filter count and capture.

As filter files are quite compact, they are read and temporarily held within sys-
tem memory during the construction process to accelerate filter counting. This
increases the peak memory utilisation of the visualiser, in relative proportion, to
both the number of filter files processed and individual file size. Once the con-
struction process completes, memory utilisation relaxes to levels comparable to
unfiltered results. The server used significantly less memory than the visualiser
client, consuming around 11 MB when left unused, and reaching a peak of 107 MB
when processing 10 filters from capture B. The memory utilisation of this process
is primarily governed by the buffer size used, which is determined at runtime by
analysing the time index file.

While the visualiser does not perform at rates comparable to the GPU accelerated
counting kernel it utilises, its processing time and memory utilisation are negli-
gible in comparison to the resources required by Wireshark over the same capture
data, and are significantly lower than those required by the classification system.
Thus, once the processing of a capture has produced the required index and filter
files, the generated solution can be reloaded in a matter of seconds, regardless of
its original size.

This post-processing need not be restricted to counting alone; relatively simple
GPGPU programs can easily accelerate other operations on filter bit-strings, such
as conjunctions, disjunctions and negations. This functionality is already contained
within the classification loop (see Section 6.8), and a stand-alone version would be
simple to extrapolate. This would allow for fast post-classification mechanisms
to combine filter outputs and rapidly create increasingly complex predicates from
exiting filter results, without needing to re-parse the capture file.
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Figure 11.11: Field distribution processing metrics

11.3.3 Field Distributions

The generation of field distributions is the simplest post-processing function im-
plemented. It simply iterates through each stored field value in a specified field
file, using the field values to build a dictionary object comprised of key-value pairs;
each unique field value is used as a key, with the associated value indicating the
number of times that it occurred in the file. Once the function has completed and
the dictionary is built, results are displayed in a bar graph drawn using the stand-
ard Microsoft .Net draw functionality. The performance of this process is shown for
field files collected from each of the three test captures in Figure 11.11. The Figure
shows four metrics:

Processing time The number of seconds taken to read and process a single field
file from a particular capture.

Field processing rate The average number of fields, in millions, processed each
second.

Field file read performance The average read throughput achieved for each file.

Capture relative performance The effective throughput achieved relative to ori-
ginal raw capture size.

The calculation of a particular field distribution is relatively slow in comparison
with either previous GPU accelerated functions or the classification process itself,
managing to process field files at a rate of roughly 60 MB/s. Processing time com-
pares favourably, however, to handling raw captures directly, with the achieved
relative throughput scaling linearly with the average packet size of a given cap-
ture. Capture B, which has an average packet size close to double that of capture
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Figure 11.12: Distiller performance for two different filtering operations.

A, achieves a relative throughput roughly twice that achieved while processing cap-
ture A. Similarly, capture C, containing packets averaging three times the size of
capture B, achieves a throughput roughly three times greater than observed while
processing capture B.

The performance achieved relative to capture size is promising, given the simplicity
of the implementation and the limited computational resources utilised. Specific-
ally, it shows that the outputs of the classification process can be used to dramat-
ically accelerate analytical operations in generic and sequential user applications.

11.3.4 Distillation

The final function evaluated was the distillation process, which extracts and re-
packages packets from a specific time interval of a large capture into a smaller
capture file, optionally filtering packets against a supplied set of filter results.

The function buffers all packet data between the supplied time indices from a single
source, performs filtering operations in a separate thread once data is buffered
in host memory, and typically only writes a subset of parsed input to a file on
a separate drive. The use of a different output drive ensures that the read and
write processes do not compete for disk resources, providing better asynchronous
performance.

Figure 11.12 shows the observed average performance for the distillation procedure
when processing two separate hour-long segments of capture C. The first segment
contained 4 GB of traffic, and was filtered for TCP traffic to produce an output
capture spanning just under 3 GB. The second segment contained just under 20
GB of data, and was filtered against a null filter which effectively drops all packets.
Both segments were processed three times from HDD and SSD RAID0 storage
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using a cold cache, while the 4 GB segment was additionally processed three times
using a warm cache (the second segment was too large to be cached).

While the distiller is not quite as efficient as the classifier (due primarily to its
implementation simplicity), it still achieves promising results. Performance scales
relative to the throughput of the input medium, although with some loss in effi-
ciency. This is most pronounced when reading from the HDD source (around 50%
efficiency), but improves appreciably when using the RAID 0 array (70% ~ 80%
efficiency). When relying on a warm cache, the process scales to over 1.2 GB/s,
showing that the performance achieved when using RAID 0 is not a hard limit,
but rather a result of inefficiencies in the architecture. Filtering seems to provide
a slight benefit to performance, likely because it reduces the amount of data that
has to be written to disk. It is worth noting that the distiller’s performance when
using the RAID 0 array (±450 MB/s) is around 100 MB/s faster than pcap’s capture
reading process, which achieves a throughput of between 300 MB/s and 350 MB/s
from the same file source (see Section 3.5).

Despite its simple implementation, the distillation process is both fast and power-
ful, providing access to arbitrary pre-filtered segments of large captures in any pro-
tocol analysis suite, often within a few seconds. As previously discussed in Section
9.3, verification of distilled captures was performed (distilled capture size permit-
ting) with Wireshark, which confirmed that both the classification and distillation
processes produced accurate results.

11.4 Summary

This chapter reported the recorded and derived performance results for the com-
plete classification system, dividing results into three main sections.

Section 11.1 reported on system performance – inclusive of capture buffering, in-
dexing operations, GPU classification and output generation – and focused primar-
ily on observed processing time, and the associated achieved packet and data rates.
Tests were performed using both the GTX 750 and GTX Titan graphics cards us-
ing a variety of input, filtering and processing configurations. Processing time was
shown to display only minor variance between iterations (which was seemingly
attributable to operating system overhead) and scaled to roughly match the read
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speed of the input source, with negligible impact evident from other configuration
attributes or capture file composition.

Section 11.2 investigated resource utilisation, focussing on host memory and disk
storage specifically. Results showed that host memory utilisation achieved a stable
constant value rapidly, and that this value scaled closely with the initial capture
buffer configuration rather than capture size. This provides evidence that the sys-
tem will scale to extremely large captures, far exceeding the capacities tested,
without depleting system resources. The section also discussed the storage re-
quirements of output files, showing that they consume a fraction of the capacity of
a raw capture.

Section 11.3 concluded the chapter by discussing the three post-processing func-
tions developed to investigate the usefulness of the system in real-world environ-
ments. These functions performed well given their implementation simplicity. The
visualiser was able to render 10 separate filter graphs, covering over 150 GB of
capture data, in only a few seconds, with minimal memory requirements. This was
made possible by the filter counting kernel, which was shown to scale to hundreds
of billions of packets per second, provided sufficient input data. The simple field
distribution function performed similarly well, summarising the field of a large
capture in a fraction of the time required when parsing directly from raw packet
data. Finally, the distillation function quickly extracted and filtered arbitrary cap-
ture segments, producing small targeted captures at high speeds.

The following part discusses the conclusions of this research, and addresses poten-
tial avenues for extension.
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12
Conclusion

THIS thesis has reported on the results of research outlined in Chapter 1,
with the aim of improving and extending the speed and versatility of gen-
eral packet classification through the use of GPU devices. The approach is

based on previously conducted exploratory research into the domain [66], which
produced a limited prototype for general classification. The implementation of
GPF+ incorporates dynamic state registers, a more sophisticated cache, and an
extended and refined processing abstraction, which together facilitate greater flex-
ibility during classification, improved scalability to larger filter sets, increased pro-
cessing efficiency, and enhanced usability through a refined abstraction. The re-
vised and more extensive approach was employed within a multi-threaded pipeline
of specialised components in order to greatly accelerate the analysis of large cap-
tures, supported by a small collection of post-processors which render the results
produced by the process both usable and useful.

This chapter provides a conclusion to the research presented, containing a sum-
mary of the preceding chapters and and overview of outcomes achieved. The chapter
is divided into the following sections:

257
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• Section 12.1 provides a summary of the topics discussed in previous chapters
of this document.

• Section 12.2 summarises the features and characteristics of the components
produced as outcomes of this research.

• Section 12.3 discusses the research outcomes in relation to research goals,
and considers some of their potential applications.

• Section 12.4 concludes the chapter with the discussion of avenues for further
research beyond the scope of the present work.

12.1 Research Summary

This research was undertaken to construct a flexible, scalable and efficient means
of general packet classification optimised for GPU hardware. This approach was
applied specifically to the problem of analysing large packet traces, achieved through
the construction of supporting host-side capture processing infrastructure and post-
processing functions. The research was introduced in Part I, which summarised the
research goals, methodology and outputs.

Part II established the foundations for the research conducted, providing neces-
sary context to the reader for the design and implementation discussed in Part III.
Chapter 2 served as an introduction to the GPU platform, with a particular focus
on the CUDA programming model and API. This chapter familiarised the reader
with the GPGPU domain and CUDA API, providing the necessary background on
GPU accelerated processing. Similarly, Chapter 3 provides context for packet cap-
ture files and packet records. In particular, this chapter familiarises the reader
with packets, protocol models, capture files, and capture file processing. Finally,
Chapter 4 discussed packet classification in detail, describing filtering and rout-
ing approaches to packet header classification, as well as the GPF prototype [66],
which incorporated filtering and routing elements to perform basic general classi-
fication on GPU hardware.

Part III described the abstract architecture and implementation of the various sys-
tem components used to facilitate classification and apply results. Chapter 5 first
introduced the classification system, and elaborated on the context and functions
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of its constituent abstract components. This chapter also described the system’s
main host side architecture, including buffering and pre-processing components.
The design and implementation of the GPF+ classification object was considered
in Chapter 6. The chapter discussed the various memory regions (constant, state
and global) and functions (caching, gathering and filtering) which cooperate to ef-
ficiently classify and extract field values from raw packet data. This process is
guided by programs and configuration compiled from a high-level DSL, which was
described separately in Chapter 7. This chapter introduced the two components of
DSL programs (the protocol library and kernel function) and their syntax, and ex-
plained how they are transformed into optimised low-level programs. Having dis-
cussed the primary components of the classification system, Chapter 8 concluded
the part by discussing three different post-processing applications, including: a
simple function to compute field distributions; a capture visualiser that quickly
renders interactive, high-level overviews of capture files; and a capture distiller,
which generates pre-filtered sub-captures using index and filter data.

Part IV evaluated the GPF+ classifier and its supporting system, discussed in the
previous part, through broad performance testing. Chapter 9 provided an over-
view of evaluation, describing the testing methodology, configuration, and verifica-
tion method, and additionally summarised the various capture and filter programs
used. Chapter 10 discussed performance results of the classification kernel in isola-
tion from host-side processes. The classifier was tested against a range of different
programs to assess the performance of the device side classifier. Chapter 11 con-
cluded evaluation by considering overall system performance from the perspective
of the user. This chapter investigated the throughput and resource utilisation of
the main classification loop (comprising the capture buffer, pre-processor and clas-
sifier) and post-processing functions, demonstrating the efficiency, scalability and
throughput of the system within a real-world context.

12.2 Research Outcomes

This section discusses the primary outputs of this research. The GPF+ classifier
is discussed first, followed by the capture processing system and post-processing
components.

The GPF+ classifier heavily refined the initially proposed architecture of GPF
[66, 71, 72, 73], and adapted it to modern GPU architecture. GPF+ introduced a



12.2. RESEARCH OUTCOMES 260

more sophisticated caching mechanism, completely replaced the interpretive read
process with a more flexible and scalable gather process, and optimised the filter
process to improve filtering efficiency by a factor of 32. GPF+ achieved this by in-
corporating a compact state machine into each executing thread, which tracks pro-
tocol offsets, efficiently prunes redundant protocols, and evaluates simple length
expressions to improve classification flexibility.

Performance evaluation of a variety of filter sets showed the approach executed
efficiently on both Kepler and Maxwell devices, achieving high occupancy and mul-
tiprocessor utilisation with only limited serialisation. Throughput was shown to
scale sub-linearly with respect to large filter and field sets with comparable pro-
tocol header counts, and near-linearly with respect to the number of cores avail-
able on the GPU device. Throughputs on the GTX Titan ranged from just under 30
million packets per second in the worst case to nearly 250 million packets/s in the
best case. Filter programs using two layers achieved throughputs slightly over 100
- 130 million packets per second, while filter programs with three layers achieved
30 - 50 million packets per second (see Section 10.5).

The following list provides an overview of some of the more significant features of
the classification approach developed during the course of this research:

• The layering abstraction and protocol encapsulation proved an effective re-
placement for decision trees on GPU hardware, supporting the flexibility to
prune unnecessary protocols at runtime whilst avoiding heavy divergence in
executing warps (see Section 6.1.2). Runtime pruning ensures filters are only
ever processed in warps where they are relevant, providing greater execu-
tion efficiency and improved scalability when processing large and diverse
filter sets (see Section 6.6). Additionally, layering allowed valid protocols in
a warp to cluster reads to reduce memory overhead (see Section 6.5.4), and
eliminated the need for protocol duplication during processing when header
offsets differed. This was supported by performance results, which showed
only minor drops in performance due to filter and field complexity.

• The classifier relies on complex and highly contextually sensitive low-level
programs that are too complex to be reliably coded by hand. Filter creation is
simplified greatly by the incorporated high-level DSL, which facilitates reuse
of protocol definitions by separating protocol structure from filter operations
(see Section 7.2). Protocol structures are described once, and subsequently
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referenced to define any number of filters and field extractions in the ker-
nel. Unreferenced fields and protocols (as well as redundant comparisons and
switches) are automatically removed at compile time (see Section 7.3). This
greatly benefits the usability of the classifier, allowing optimised and highly
parallel programs to be constructed from simple high-level descriptions.

• The classifier is implemented as a relatively self-contained device-side object
that can be declared and used within any arbitrary kernel, provided the clas-
sifier’s constant memory space is populated appropriately before use. While
the object uses up to 27 registers while executing (see Section 10.1.1), it con-
sumes only eight persistent registers to store state and cache memory when
idle, with the rest existing only within the scope of specific methods. The im-
plementation does not employ any explicit synchronisation (see Section 6.1.3),
which allows for complete execution independence between warps in an ex-
ecuting block. As a result, the object could be declared and used within a
kernel that also processes its outputs – either directly, or through dynamic
parallelism (see Section 2.8.5).

The remainder of the research focussed on applying this algorithm to the acceler-
ation of capture analysis. The classifier was used in a multi-threaded pipeline of
components to buffer, index and classify packet data (see Section 5.2). A collection
of post-processors, which applied outputs of this pipeline to analyse large traces,
was also included. This system of components significantly accelerated large cap-
ture analysis through filtering, visualisation and distillation, demonstrating the
usefulness of the classifier and its outputs in this domain. The following list dis-
cusses the research outcomes associated with this secondary objective.

• The capture processing pipeline was highly successful, achieving a stable
throughput of roughly 600 MB/s from a software RAID of SATA III SSDs,
even under high load (see Section 11.1). Throughput was ultimately limited
by the storage medium, and may continue to scale if faster mediums are used.
Notably, the pipeline achieved throughputs equivalent to indexing operations
when classifying on both the GTX 750 and GTX Titan (see Section 11.1.4),
despite classifier testing showing the GTX Titan outperformed the GTX 750
by close to a factor of 6 (see Section 10.5). This indicates that GPU perform-
ance was not a bottleneck during execution, with even entry level cards being
capable of outperforming two SSDs in RAID 0.
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• Despite its simplicity, the mirrored file reading mechanism was as effective
as a RAID at accelerating capture buffering when using the same drive pair
(see Section 11.1). This makes it useful mechanism when a RAID array is
unavailable. Resource utilisation remained constant for all captures tested
(see Section 11.2.1), indicating that the process can scale to any capture size.

• Outputs are stored as arrays of integers or as bit-strings, which are easy to
process in external contexts and adapt to arbitrary functions. These outputs
were applied successfully to field distribution calculations (see Section 8.1),
capture visualisation (see Section 8.2), and capture distillation (see Section
8.3). As index, field and filter information is well ordered and condensed
(see Sections 5.1, 6.4.3 and 11.2.2), output files can be read into memory and
processed far more quickly than a raw capture file (see Section 11.3). Outputs
are currently uncompressed, however, and would benefit from space efficient
encoding, such as those explored in capture indexing approaches (see Section
3.3.5).

• Post-processors were used to quickly analyse protocol composition and display
the traffic dynamics for hundreds of millions of packets in seconds (see Sec-
tion 11.3.1). In addition, the distillation post-processor extracted pre-filtered
sub-captures from traces otherwise too large to process (see Section 11.3.4).
This makes large packet captures more accessible to analysis, as they can
be fragmented and pre-filtered into chunks small enough to easily process in
applications such as Wireshark.

The GPF+ algorithm significantly extends and improves the comparatively simple
architecture of GPF, providing greater flexibility, efficiency, scalability and usabil-
ity than its prototype counterpart. Accessing packet data appears to be the most
expensive aspect of the process, although this should improve as Nvidia micro-
architectures evolve. The classifier and its supporting components have been shown
to greatly accelerate the analysis of large capture files, producing non-volatile res-
ults that are easy to process in external contexts, without heavy memory utilisation
or processor load. This provides a solid foundation on which to expand and optimise
the approach in the future ( see Section 12.4).
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12.3 Conclusions

The overarching goal of this research was to provide a solid framework for gen-
eral protocol analysis through experimental implementation. The research aimed
to improve upon and extend prior research done by the author into GPU acceler-
ated general classification [66, 71, 73, 74], and apply it to the problem of capture
analysis for the purposes of practical evaluation. This proved highly successful,
with the packet classifier, capture processing system and results post-processors
meeting or exceeding initial research goals (see Section 1.3.3).

This section discusses the various components and potential applications of this
research, within the context of the research goals originally set.

12.3.1 Extending GPF functionality

The GPF+ classifier was designed to extend protocol independent filter queries
and field extraction to a GPU context, maintaining the generality of the initial
approach to support a wide array of potential applications, while providing added
flexibility, scalability, efficiency and usability. The GPF+ classifier heavily extends
and re-works the algorithm developed in prior work [66], taking advantage of the
increased flexibility and device-side resources of modern GPUs.

• The classification approach developed provides sufficient flexibility to support
variable length fields and handle optional fields, greatly improve the coverage
of the process. The approach provides support for a wider variety of protocol
types, improves classification accuracy, and provides better handling for mul-
tiple classification paths. In addition, the state memory (see Section 6.3) and
warp voting (see Section 6.5.4, 6.6.2 and 6.6.3) mechanisms provide an archi-
tectural foundation on which to extend functionality, through finer grained
branching (to support optional fields), and greater access to state registers
(to manipulate data offsets programmatically). The classifier also includes
limited support for expression evaluation (see Section 6.7.3), which could be
extended with relative ease to allow arbitrary computation (to generate met-
rics, etc.) during classification.

• The GPF+ classifier is implemented as a fully device-side object (see Section
6.1), rather than as a collection of independent but cooperative kernels, as was
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the case with the earlier GPF prototype [66]. The classifier object occupies 8
registers (for state memory and the packet cache), uses no shared memory,
and achieves close to full occupancy during execution (see Chapter 10). This
makes it potentially possible to employ the classifier within an executing ker-
nel, rather than as a separate pre-processor. For instance, a simple NIDS
function could use the classifier to produce a set of field values and filter bit-
strings in device memory, which it could then immediately process within the
same kernel, or pass on to a subsequent kernel. This also applies to the gen-
eration of index files for capture indexing approaches (see Section 3.3.5); all
outputs in device memory could be processed immediately, rather than rely-
ing on sequential host-side processes to pre-extract relevant fields [27]. This
provides added flexibility in how the classifier can be applied, and benefits
scalability, efficiency and usability as well.

• The classifier performs all aspects of general header classification, including
protocol parsing, field comparisons and predicate evaluation, in parallel on
the GPU. This allows the process to scale more easily to available GPU re-
sources, as no host side interactions are necessary during processing. As long
as the constant and global memory regions are populated before invocation
(see Sections 6.2 and 6.4), the classifier could potentially be allocated, initial-
ised and used within dynamic kernels on demand (see Section 2.8.5). This
could allow a dynamic process to scale classifier resources to adjust to chan-
ging load, for example, by increasing or decreasing the number of separate
executing instances.

• The high-level DSL significantly improves the usability of the programming
interface and the scalability of filter programs. While the current implement-
ation of the DSL is constrained to a very limited scope, it incorporates the
basic foundations necessary to flesh out a more refined and feature-rich syn-
tax. In particular, it generalises to arbitrary protocols, limits protocol replic-
ation, and manages protocol relationships transparently (see Section 7.2.2),
greatly simplifying filter program creation. Programs are easy to optimise
(see Section 7.3.2), which additionally helps to improve execution efficiency.

The GPF+ provides greater coverage than the original GPF, and improves on the
flexibility, scalability, usability and efficiency of the approach in a number of differ-
ent ways. As a result of its improved generality, it has many potential applications,
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particularly within the domains of network security and protocol analysis, where
routing algorithms are not always sufficient.

12.3.2 Accelerating Capture Processing

The second goal of this research was to accelerate capture classification through the
development of a multi-threaded pipeline of high-performance components. The
pipeline was designed with similar priorities to the classifier, but with stronger
emphasis on scalability and efficiency in order to support arbitrarily large capture
files.

• The multi-threaded reader allows captures to be read from multiple interfaces
simultaneously (see Section 5.4.2), providing performance comparable to a
RAID 0 array with ad hoc drives (see Section 11.1.4). This feature can signific-
antly reduce capture processing time without requiring specially formatted,
identical disks. This process could be extended to incorporate multi-GPU sup-
port, by dividing workers between GPUs. It could also be employed, in com-
bination with the pre-processor (see Section 5.5), to interleave packets from
multiple capture sources into a stream of packets ordered by time stamps.
This could be used to quickly combine captures or process multiple captures
simultaneously, which could be useful for generating metrics from multiple
trace files.

• All host side components are connected via 0MQ (see Section 5.2.2), which
facilitates asynchronous interaction. The use of 0MQ to provide the backbone
of capture processing makes it easier to span these components out across
multiple processes or remote hosts at a later point [33], with little change
necessary to the architecture. This pipeline could be extended into a fully
modular approach, by providing a standard interface to connect component’s
0MQ sockets. For instance, an API front-end could be connected to the clas-
sifier to facilitate pcap-like functionality, allowing processes to pass buffers
directly to the classifier and retrieve results, without relying on other host-
side components. Alternatively, a post-processing component could replace
the output writer, applying results immediately to a specialised task, rather
than storing them for later use.
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• The classification pipeline has relatively fixed memory requirements (see Sec-
tion 11.2.1), and unlike Wireshark, does not scale memory utilisation with
capture size (see Section 3.6.2). This allows extremely large captures to be
processed without exhausting host memory resources, even on 32-bit ma-
chines. The process does not consume significant CPU resources either (see
Section 11.1), as the majority of computation is performed on typically under-
utilised GPU devices. The process is thus resource efficient, and can feasibly
scale to any capture size without exhausting system memory or slowing sys-
tem performance. As the process is lightweight, it could conceivably be em-
ployed as a service which categorises inbound traffic for live traffic monitoring
or logging purposes.

• The system produces persistent outputs that are simple to navigate and util-
ise, and can be reused to avoid repeated processing. Despite being uncom-
pressed, these results are much smaller than the raw captures they refer to
(see Section 11.2.2), and thus can be read from disk far more quickly than
if accessed from raw packet data. Additional compression could compact
them further for the purposes of either archiving or index based accelera-
tion [26, 46]. As results are persistent, they may be shared for the purposes
of research without exposing the contents of packet data.

The classification pipeline greatly accelerates capture filtering, saturating all stor-
age interfaces tested while performing multiple classifications and field extractions
in parallel. The process is resource efficient, scalable to captures of any size on even
memory limited machines, and produces efficient, reusable outputs.

12.3.3 Supporting Protocol Analysis

The final goal of this research was to apply the classifier and capture processing
system outputs to solve problems associated with protocol analysis, and to demon-
strate the utility of generated results in a real-world context.

• The capture visualiser (see Section 8.2), while limited to a single graph type,
rendered simple interactive overviews of hundreds of millions of packets (and
billions of arbitrary filter results) in seconds (see Sections 11.3.1 and 11.3.2),
for any arbitrary set of filters. This functionality could easily be extended
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to provide a much wider variety of general and specialised graphs, poten-
tially supported by a specific classifier program that extracts context-specific
information. Alternatively, visualisation could be performed through third-
party Business Interfaces (BIs) or dashboards, which provide a wide variety
of visualisation and graphing options for incoming data. This could be applied
within intrusion detection systems, network administration and monitoring
applications, and network related research to quickly chart arbitrary protocol
attributes within large packet sets.

• The ability to distil small, pre-filtered captures rapidly from the visualiser
(see Section 8.3) greatly improves the accessibility of large packet traces. In
addition, it directly applies system outputs (and multiple post-processors) to
dramatically improve the usefulness of existing protocol analysis software
when analysing large captures. The function allows the system to be used
as a powerful pre-processor that crops and pre-filters captures to manageable
sizes faster than they can be read by pcap (see Section 11.3.4), allowing the
full functionality of Wireshark or other analysers to perform detailed analysis
on only the remaining packets.

• The visualiser and field distribution post-processors work independently of
packet data, and can be used without access to the original capture. This al-
lows system outputs to be used to perform high-level analysis of large packet
sets remotely, without requiring the complete raw data set. By carefully se-
lecting the fields and filters that are included, captures can be mapped with
fine grained control over what information is shared. This can be used to
address the security and privacy concerns of sharing traces collected on live
networks, which may contain significant volumes of private, protected and
personally identifiable information [16]. Sharing captures in this way re-
quires less storage space and processing time, and provides much greater
control over what information in the capture is accessible to those processing
it.

The implemented post-processors apply classification results to provide powerful
functionality that both simplifies and accelerates protocol analysis, particularly
with respect to large packet captures. More importantly, they demonstrate the
versatility of results and the performance benefits they provide over repeatedly
re-parsing captures.
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12.4 Future Work

A primary goal of future work is to extend functionality of the GPU classifier in
order to provide finer execution control and flexibility, as well as improved usab-
ility. The current implementation incorporates many new features, and lays the
foundation for many more, but still lacks efficient handling for several important
or otherwise potentially useful functions. Another area worth investigating and
extending is the syntax and functionality of the DSL, which is currently feature-
limited due to scope constraints. Many other areas are also of interest, as both the
classifier and its supporting components present many opportunities for optimisa-
tion and extension.

A selection of desirable extensions that could be used to improve flexibility, usabil-
ity and performance are summarised in the following list:

• User defined variables – Support for user defined variables could be used
to supply temporary and reusable local storage. This could be used to hold
accumulated metrics and packet data, share field values between protocols,
and provide a means to extend field extraction in order to facilitate more
complex and generalised computation. On current hardware, these vari-
ables could be housed in either global memory or shared memory (currently
unused). Global memory would provide far greater storage capacity, while
shared memory would provide higher throughputs. Shared memory is a lim-
ited resource, however, and avoiding its use allows it to be applied elsewhere.
Global memory throughput is expected to improve dramatically in Pascal
micro-architecture (see Section 2.2.5), making the performance trade-offs
between these mediums unclear. Future research into this functionality will
thus largely depend on the impact of future memory architecture on global
memory performance.

• Driver encapsulation and live traffic monitoring– The current implement-
ation relies on external software (specifically the WinPcap driver [103]) to
manage the collection and storage of packet data from a specific network in-
terface, which writes this data as a capture on a local hard drive. This is
inefficient for live monitoring, as it relies on the unnecessary storage and re-
trieval of packet data on bandwidth-limited local drives. While the WinPcap
driver could be used for managing a live interface, it is not optimised for the



12.4. FUTURE WORK 269

intended GPU platform, and performs tasks that are not necessary (such as
capturing timestamp information for every packet). To address this, the gen-
eral pcap driver could be replaced with a specialised driver for GPF+ that
captures and prunes packet records on arrival, and copies relevant portions
directly into a write-combined page-locked memory buffer for dispatch to the
GPU. In addition to filling processing buffers, the driver could additionally
handle both packet and time indexing operations, recording the eventual off-
set positions of each arriving packet, and the time delta in which each packet
falls. As there is no recorded capture to apply classification results or indexing
information to, this information can instead be used for monitoring purposes.

• Decisions and looping – The system currently uses decisions (in the form of
warp voting) to facilitate runtime pruning and protocol branching (see Section
6.6). These mechanisms could be extended to facilitate decisions and loops
through if and while statements, useful in directly evaluating optional and
variable length fields, respectively. Additionally, switch statements (currently
dedicated and restricted to switching between protocols) could be expanded to
support more general computation beyond simple goto statements (see Sec-
tion 7.2.2). This functionality may prove useful when attempting to process
complex protocols or payload data.

• System register read/write access – GPF+ provides direct read/write access
(and expression evaluation support) to the length state variable, in order to
handle variable length protocols (see Section 6.7.3). This could be extended to
other state variables, such as protocol state registers and read offset registers
(see Section 6.3). Combined with more general decision operations, access to
system registers would afford much finer control of program execution, and
could be used to better support optional fields.

• Large field support – The current implementation only directly supports fields
up to four bytes in size (see Section 6.5.5), and requires larger fields to be split
manually into multiple sub-fields, that are subsequently written to independ-
ent arrays in results memory (see Section 6.4.3). This could be improved by
splitting large fields into sub-fields transparently within the DSL and provid-
ing additional functions to write multiple sub-fields to a single output array,
in the correct order, on the device. This would provide proper support for large
field values, such as 128-bit IPv6 addresses.

• Index-guided processing – The capture processing pipeline process captures
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sequentially, as this is necessary to determine packet offsets in the capture
file. As a result, buffers produced by mirrored file readers have to be in-
terleaved into a sequential queue and processed in order (see Section 5.4.2).
This sequential component is not actually necessary, provided index files have
already been generated for the capture. Index files could be used to divide
captures into several large segments, each read by a dedicated worker thread
that writes to a specific execution stream (or GPU). Index files may addition-
ally be used to navigate untrimmed packet records on the device. With the
support of NVlink and unified memory (see Section 2.2.5) [25], packet data
could be directly accessed from host memory through NVlink, avoiding the
buffer copy to device memory. As with other potential functions, this depends
heavily on the effectiveness and applicability of Pascal’s improved memory
architecture.

• Stateful inspection through multi-pass analysis – The current implementa-
tion has been constructed to evaluate all packet header layers in a single
GPU kernel invocation. This process is suited to classification of independent
packets, but lacks capabilities for higher level operations such as stream-
based processing and stateful analysis. To expand the functionality of the
platform to facilitate analytical operations over collections of packets, the
existing header classification kernel can be used to generate initial results
within a multi-pass pipeline of kernels. Results collected from this first pass
(such as protocol composition, port numbers, IP addresses, fragmentation in-
formation, etc.) can be used in subsequent passes to compute metrics relating
to specific streams, or to select appropriate packets for deep packet inspection
or payload processing operations.

Additional research avenues include but are not limited to the following:

• A wrapper API to simplify the use of the pipeline and its components within
external applications.

• Full support for multiple GPUs to allow the system to further accelerate pro-
cessing, in order to scale to high-speed live interfaces.

• Expanded expression evaluation to allow for more diverse calculations within
executing kernels, for use in computing arbitrary metrics and runtime stat-
istics.
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• Results compression to reduce the storage footprint of generated index and
result files.

• Grammar extensions in both the DSL and GPF+ kernel to simplify and accel-
erate common filter related tasks, such as IP address masking.

12.5 Other Applications

The previous sections of this chapter have focussed exclusively on revisions and ex-
tensions to better support packet filtering. The classification methodology detailed
in this work has potential applicability in other domains, however, and this section
aims to highlight some of these potential applications.

• Network security applications – The GPF+ classifier may be applied to sup-
port/supplement network security applications, including firewalls and IDSs.
The developed approach is better suited to batch processing tasks that do not
require low latency processing, as GPU-based classification relies on the sim-
ultaneous processing of large numbers of packet records. This is partially mit-
igated by utilising multiple separate execution streams to subdivide traffic,
but cannot be avoided entirely. While this dilutes its usefulness as a real-time
classifier due to inflated latency on incoming packets, it may still be useful as
a secondary processor for more rigorous evaluation of traffic.

• Packet processing for Big Data / Cloud environments – This research has fo-
cussed on desktop systems as a deployment environment for GPF+, and has
not considered its use in large-scale distributed computation within a Big
Data or cloud environment. GPF+ is well suited to this task, due to its abil-
ity to scale across multiple GPU-based processors such as Tesla servers with
ease. As many cloud and Big Data platforms support GPU virtualisation,
GPF+ could potentially be used to accelerate the transformation of packet
data from raw, unstructured binary arrays to structured and semi-structured
data points within a Big Data distribution (such as Hadoop [4]), or perform
monitoring across virtual machines in the cloud using Nvidia GRID [88].

• Grid-based sensor network – GPF+ may be employed as a processor on a
distributed grid platform such as BOINC (Berkeley Open Infrastructure for
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Network Computing) [120], which could be useful as a tool similar to a net-
work telescope for researching and analysing large scale networks or Internet
traffic. For example, using a specialised GPF+ program, each node on the grid
could compute individual metrics for the local host and/or nearby neighbours
as a background process, and pass this reduced information periodically to a
database or Big Data solution for detailed analysis. The generated metrics
could be used to analyse long term traffic dynamics for large scale network
traffic, collected from either local or geographically distributed hosts. Altern-
atively, it could be used to monitor the health of an internal network, or detect
and trace malicious activity that occurs behind the boundary firewall.

• Generating inputs for Machine Learning – GPF+ outputs may be used as
training data for supervised machine learning applications, providing a found-
ation from which an artificial intelligence may use generated meta-data, in
combination with raw packet transmissions, to learn to identify packets and
protocols, build a baseline for the behaviour of a particular network over
time, or rapidly identify malicious transmissions. Depending on the input
programs used, supervised learning may use results for broad-based categor-
isation, or for specialised domain specific tasks. Machine learning may be
integrated into a Big Data platform or grid, providing very large and detailed
data sets to train against.

• Packet processing for simulated and virtual networks – Virtual networks
have applications in network and security related research, and use large
collections of interconnected virtual machines to simulate or study network
traffic and malware propagation. Through the virtualisation technologies in-
cluded in Nvidia GRID 2.0, each virtual machine may use virtualised GPU
resources to perform detailed categorisation, metric extraction, and traffic
analysis on its virtual interface(s). As the GPF+ high level language provides
the flexibility to process arbitrary protocols, the metrics captured can be spe-
cialised to particular tasks, protocols, or types of traffic.

• Log file and database processing – The GPF+ processor is specifically de-
signed for packet analysis, but the techniques used could be generalised to
other data sources that follow a structured or semi-structured schema. The
process could, for instance, be adapted to process log files or relational and
non-relational tables. The current implementation is only suitable for fixed
length fields, or variable length fields with specified lengths; processing fields
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which terminate on the occurrence of specific characters would require addi-
tional work.

12.6 Concluding Remarks

The components described in this research have proven highly successful in im-
proving general packet classification on GPU hardware, accelerating large cap-
ture processing, and applying capture results to simplify and accelerate protocol
analysis. In addition, these components form a solid foundation for future ex-
pansion and refinement, and provide ample opportunities for optimisation. It is
expected that the performance of the approach will continue to improve as GPU
micro-architectures mature, and current bottlenecks (such device memory access
and transfer overhead) diminish in importance.
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A
Grammar Syntax

This appendix provides complete EBNF listings for the high-level grammar (see
Section 7.2) used in the DSL, as well as the instruction syntax used for the gather
and filter programs used in GPF+ (see Sections 6.6 and 6.8).

A.1 EBNF for High-Level Grammar

1 program = protocol library, kernel function ;

2
3 (* protocol library *)

4 protocol library = protocol, { protocol } ;

5
6 (* Protocol *)

7 protocol = "protocol", id, [ "[", number, "]" ], ( ";" | protocol body ) ;

8 protocol body = "{", { field }, [ switch ], "}" ;

9
10 (* Field *)

11 field = "field" , id , "[", number, ":", number, "]" , ( ";" | field body )

;
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12 field body = "{", { field filter }, [ field expression ], "}" ;

13
14 (* Filter *)

15 field filter = ".", id, comparison operator, number, ";" ;

16 comparison operator = "==" | "!=" | "<=" | ">=" | "<" | ">" ;

17
18 (* Length Field Processing *)

19 field expression = "$length", "=", integral expression, ";" ;

20 integral expression = multiply operation, { "+", multiply operation } ;

21 multiply operation = expression atom, { "*", expression } ;

22 expression atom = "$value" | number | ( "(", integral expression, ")" ) ;

23
24 (* Switch Statements *)

25 switch = "switch", "(", id, ")", "{", { switch case }, "}" ;

26 switch case = "case", id, ":", "goto", id, ";" ;

27
28 (* kernel function *)

29 kernel function = "main", "(",")", "{", { ( filter predicate | field

extraction ), ";" }, "}" ;

30
31 (* Filter Predicates *)

32 filter predicate = and operation, { "||", and operation } ;

33 and operation = not operation, { "&&", not operation } ;

34 not operation = [ "!" ], filter atom ;

35 filter atom = field comparison | protocol | adhoc comparison | ( "(",

filter predicate, ")" ) ;

36
37 (* Field Comparisons *)

38 field comparison = id, ".", id, ".", id ;

39 adhoc comparison = id, ".", id, comparison operator, number ;

40 protocol = id ;

41
42 (* Field Extraction *)

43 field extraction = "int", id, "=", id, ".", id ;

44
45 (* Types *)

46 number = ( ip address | integer | hex value ) ;

47 ip address = integer, ".", integer, ".", integer, ".", integer ;

48 id = ( letter | caps | "_" ), { letter | caps | "_" | digit } ;

49 integer = digit, { digit } ;

50 hex value = "0x", hex, { hex } ;

51
52 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
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53 letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" |

"l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" |

"x" | "y" | "z" | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" |

"V" | "W" | "X" | "Y" | "Z" ;

54 hex = digit | "a" | "b" | "c" | "d" | "e" | "f" | "A" | "B" | "C" | "D" | "

E" | "F" ;

A.2 EBNF for Gather Program

1 gather program = { stack layer } ;

2
3 (* Layer *)

4 stack layer = layer header , cache chunk count , { cache chunk } ;

5 layer header = protocol count , { layer protocol } , skip offset ;

6 layer protocol = protocol id , protocol length ;

7
8 (* Cache *)

9 cache chunk = local offset , protocol count , { protocol set } ;

10
11 (* Protocol Set *)

12 protocol set = protocol id , skip offset , field count , { field set };

13
14 (* Field *)

15 field set = field offset , field length , store index , filter count, {

filter comparison } , expressions ;

16
17 (* Filter and Switch *)

18 filter comparison = comparison operator , lookup index , switch id ,

working index ;

19 comparison operator = "0" | "1" | "2" | "3" | "4" | "5" ;

20
21 (* Expression *)

22 expression = expression count , { sum } ;

23 sum = product count , { product } , value ;

24 product = value count , { value } ;

25 value = type id , index ;

26
27 (* Types *)

28 protocol count = number ;

29 protocol id = number ;

30 protocol length = number ;

31 skip offset = number ;
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32 cache set count = number ;

33 local offset = number ;

34 protocol count = number ;

35 field count = number ;

36 field offset = number ;

37 field length = number ;

38 store index = number ;

39 filter count = number ;

40 lookup index = number ;

41 switch id = number ;

42 working index = number ;

43 expression count = number ;

44 product count = number ;

45 store index = number ;

46 value count = number ;

47 read type = number ;

48 read index = number ;

49 store type = "0" | "1" ;

50
51 number = digit , { digit } ;

52 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

A.3 ENBF for Filter Program

1 filter program program = filter count , { filter } ;

2
3 (* Filter Predicate *)

4 filter = or count , { group } , store location;

5 group = and count , { element } ;

6 element = invert , read index ;

7 store location = store type, write index;

8
9 (* Types *)

10 filter count = number ;

11 or count = number ;

12 and count = number ;

13 invert = "0" | "1" ;

14 store type = "0" | "1" ;

15 read index = number ;

16 write index = number ;

17
18 number = digit , { digit } ;

19 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;



B
Common TCP/IP Protocols

This appendix shows the structure of a small selection of common protocols from
the TCP/IP suite that were discussed frequently in this research.

Figure B.1: Ethernet II Header Format
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Figure B.2: IPv4 Header Format

Figure B.3: IPv6 Header Format

Figure B.4: TCP Header Format
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Figure B.5: UDP Header Format

Figure B.6: ICMP Header Format



C
Summary of Testing Configuration

This appendix provides a summary of the testing configurations used during test-
ing.

Table C.1: Host Configuration

CPU

Make Intel
Model Core i7-3930K
Cores 6

Base Frequency 3.2 GHz

RAM

Type DDR3 1600
Total Memory 32 GB

System Memory 24 GB
RAM Disk 8 GB

Operating System Windows 7 x64
PCIe Interface PCIe 2
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Table C.2: Overview of GPUs used in testing.
GPUs Tested

GTX 750 GTX Titan
Manufacturer Gigabyte MSI

Version GV-N750OC-1GI 06G-P4-2790-KR
Micro-architecture Maxwell Kepler

Compute Capability 5.0 3.5
CUDA Cores 512 2688

Device Memory (MB) 1024 6144
Memory Type GDDR5 GDDR5

Core Base Clock (MHz) 1020 837
Memory Bandwidth (GB/s) 80 288

Release Price $119 $999
Release Date February 18th, 2014 February 21st, 2013

Table C.3: Storage devices used during testing.
Storage Devices

HDD SSD
Interface SATA II SATA III

Drive Various Crucial MX100
Model No. Various CT256MX100SSD1

Drive Count 4 2
Drive Capacity 1.5TB - 2TB 256 GB

Peak Read Speed ±120 MB/s ±500 MB/s
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Table C.4: Packet sets used in testing.
Packet Set A B C

Total Packets 26,334,066 260,046,507 338,202,452
Average Size 70 bytes 155 bytes 480 bytes
Average Rate 0.9 /s 15 /s 12,150 /s

File Size 2.1 GB 41.4 GB 156 GB
Duration 11 months 6 months 8 hours



D
Filter Programs

This appendix contains the full source for all programs used during testing.

D.1 Linux CookedCapture Header

This code fragment shows the link-layer header used when processing capture C.

1 protocol LinuxCookedCapture

2 {

3 field EtherType [112:16]

4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 ...

8 }

9 switch(EtherType)

10 {

11 case IPv4: goto IPv4;

12 case IPv6: goto IPv6;
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13 ...

14 }

15 }

D.2 Program Set A

This section provides the full source for programs A1, A2 and A3, which perform
filtering operations only.

D.2.1 Program A1

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IP == 0x800;

6 }

7 switch(EtherType)

8 {

9 case IP: goto IP;

10 }

11 }

12 protocol IP {}

13
14 main()

15 {

16 filter ip = IP;

17 }

D.2.2 Program A2

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 .ARP == 0x806;

8 }
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9 switch(EtherType)

10 {

11 case IPv4: goto IPv4;

12 case IPv6: goto IPv6;

13 case ARP: goto ARP;

14 }

15 }

16 protocol ARP {}

17 protocol IPv4

18 {

19 field IHL [4:4]

20 {

21 $length = $value * 4;

22 }

23 field Protocol [72:8]

24 {

25 .ICMP == 1;

26 .TCP == 6;

27 .UDP == 17;

28 }

29 switch (Protocol)

30 {

31 case ICMP: goto ICMP;

32 case TCP : goto TCP;

33 case UDP : goto UDP;

34 }

35 }

36 protocol IPv6

37 {

38 field PayloadLength [32:16]

39 {

40 $length = $value;

41 }

42 field NextHeader [48:8]

43 {

44 .TCP == 6;

45 .UDP == 17;

46 .ICMP == 58;

47 }

48 switch (NextHeader)

49 {

50 case TCP : goto TCP;

51 case UDP : goto UDP;

52 case ICMP: goto ICMP;
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53 }

54 }

55 protocol TCP {}

56 protocol UDP {}

57 protocol ICMP {}

58
59 main()

60 {

61 filter tcp = TCP;

62 filter udp = UDP;

63 filter icmp = ICMP;

64 filter arp = ARP;

65 }

D.2.3 Program A3

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 }

8 switch(EtherType)

9 {

10 case IPv4: goto IPv4;

11 case IPv6: goto IPv6;

12 }

13 }

14 protocol IPv4

15 {

16 field IHL [4:4]

17 {

18 $length = $value * 4;

19 }

20 field Protocol [72:8]

21 {

22 .ICMP == 1;

23 .TCP == 6;

24 .UDP == 17;

25 }

26 switch (Protocol)

27 {

28 case TCP : goto TCP;
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29 case UDP : goto UDP;

30 case ICMP: goto ICMP;

31 }

32 }

33 protocol IPv6

34 {

35 field PayloadLength [32:16]

36 {

37 $length = $value;

38 }

39 field NextHeader [48:8]

40 {

41 .TCP == 6;

42 .UDP == 17;

43 .ICMP == 58;

44 }

45 switch (NextHeader)

46 {

47 case TCP : goto TCP;

48 case UDP : goto UDP;

49 case ICMP: goto ICMP;

50 }

51 }

52 protocol TCP

53 {

54 field SourcePort [0:16];

55 field DestinationPort [16:16];

56 }

57 protocol UDP

58 {

59 field SourcePort [0:16];

60 field DestinationPort [16:16];

61 }

62 protocol ICMP {}

63
64 main()

65 {

66 filter icmp = ICMP;

67 filter tcp = TCP;

68 filter udp = UDP;

69
70 filter ftp_src = TCP.SourcePort == 21 || TCP.DestinationPort == 21;

71 filter smtp = TCP.SourcePort == 25 || TCP.DestinationPort == 25;

72 filter http = TCP.SourcePort == 80 || TCP.DestinationPort == 80;
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73
74 filter ssh = TCP.SourcePort == 22 || TCP.DestinationPort == 22 || UDP.

SourcePort == 22 || UDP.DestinationPort == 22;

75 filter dns = TCP.SourcePort == 53 || TCP.DestinationPort == 53 || UDP.

SourcePort == 53 || UDP.DestinationPort == 53;

76 filter dhcp = UDP.SourcePort == 68 && UDP.DestinationPort == 67 || UDP.

SourcePort == 67 && UDP.DestinationPort == 68;

77
78 filter dhcp6 = UDP.SourcePort == 546 && UDP.DestinationPort == 547 ||

UDP.SourcePort == 547 && UDP.DestinationPort == 546 || TCP.

SourcePort == 546 && TCP.DestinationPort == 547 || TCP.SourcePort ==

547 && TCP.DestinationPort == 546;

79 }

D.3 Program Set B

This section provides the full source for programs B1, B2 and B3, which perform
field extraction operations only.

D.3.1 Program B1

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IP == 0x800;

6 }

7 switch(EtherType)

8 {

9 case IP: goto IP;

10 }

11 }

12 protocol IP

13 {

14 field Protocol [72:8];

15 }

16 main()

17 {

18 int proto = IP.Protocol;

19 }
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D.3.2 Program B2

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IP == 0x800;

6 }

7 switch(EtherType)

8 {

9 case IP: goto IP;

10 }

11 }

12 protocol IP

13 {

14 field IHL [4:4]

15 {

16 $length = $value * 4;

17 }

18 field Protocol [72:8]

19 {

20 .TCP == 6;

21 .UDP == 17;

22 }

23 field SourceAddress [96:32];

24 field DestinationAddress [128:32];

25 switch (Protocol)

26 {

27 case TCP : goto Ports;

28 case UDP : goto Ports;

29 }

30 }

31 protocol Ports

32 {

33 field SourcePort[0:16];

34 field DestinationPort[16:16];

35 }

36
37 main()

38 {

39 int proto = IP.Protocol;

40 int srcaddr = IP.SourceAddress;

41 int destaddr = IP.DestinationAddress;

42 int srcport = Ports.SourcePort;
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43 int destport = Ports.DestinationPort;

44 }

D.3.3 Program B3

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 }

8 switch(EtherType)

9 {

10 case IPv4: goto IPv4;

11 case IPv6: goto IPv6;

12 }

13 }

14 protocol IPv4

15 {

16 field IHL [4:4]

17 {

18 $length = $value * 4;

19 }

20 field Protocol [72:8]

21 {

22 .ICMP == 1;

23 .TCP == 6;

24 .UDP == 17;

25 }

26 switch (Protocol)

27 {

28 case ICMP: goto ICMP;

29 case TCP : goto TCP;

30 case UDP : goto UDP;

31 }

32 }

33 protocol IPv6

34 {

35 field PayloadLength [32:16]

36 {

37 $length = $value;

38 }

39 field NextHeader [48:8]
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40 {

41 .TCP == 6;

42 .UDP == 17;

43 .ICMP == 58;

44 }

45 switch (NextHeader)

46 {

47 case TCP : goto TCP;

48 case UDP : goto UDP;

49 case ICMP: goto ICMP;

50 }

51 }

52 protocol TCP

53 {

54 field SourcePort [0:16];

55 field DestinationPort [16:16];

56 field SequenceNumber [32:32];

57 field AcknowledgmentNumber [64:32];

58 }

59 protocol UDP

60 {

61 field SourcePort[0:16];

62 field DestinationPort[16:16];

63 field Length [32:16];

64 }

65 protocol ICMP

66 {

67 field Type [0:8];

68 field Code [8:8];

69 }

70 main()

71 {

72 int ethertype = Ethernet.EtherType;

73
74 int tcpsrcport = TCP.SourcePort;

75 int tcpdestport = TCP.DestinationPort;

76 int tcpseqno = TCP.SequenceNumber;

77 int tcpackno = TCP.AcknowledgmentNumber;

78
79 int udpsrcport = UDP.SourcePort;

80 int udpdestport = UDP.DestinationPort;

81 int udplen = UDP.Length;

82
83 int icmptype = ICMP.Type;
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84 int icmpcode = ICMP.Code;

85 }

D.4 Program Set C

This section provides the full source for programs C1, C2 and C3, which perform
filtering and field extraction operations simultaneously.

D.4.1 Program C1

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 }

8 switch(EtherType)

9 {

10 case IPv4: goto IPv4;

11 case IPv6: goto IPv6;

12 }

13 }

14 protocol IPv4 { field Protocol [72:8]; }

15 protocol IPv6 { field NextHeader [48:8]; }

16
17 main()

18 {

19 filter ipv4 = IPv4;

20 filter ipv6 = IPv6;

21
22 int proto = IPv4.Protocol;

23 int nextHeader = IPv6.NextHeader;

24 }

D.4.2 Program C2

1 protocol Ethernet

2 {

3 field EtherType [96:16]
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4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 .ARP == 0x806;

8 }

9 switch(EtherType)

10 {

11 case IPv4: goto IPv4;

12 case IPv6: goto IPv6;

13 case ARP: goto ARP;

14 }

15 }

16 protocol ARP {}

17 protocol IPv4

18 {

19 field IHL [4:4]

20 {

21 $length = $value * 4;

22 }

23 field Protocol [72:8]

24 {

25 .ICMP == 1;

26 .TCP == 6;

27 .UDP == 17;

28 }

29 switch (Protocol)

30 {

31 case ICMP: goto ICMP;

32 case TCP : goto ServicePorts;

33 case UDP : goto ServicePorts;

34 }

35 }

36 protocol IPv6

37 {

38 field PayloadLength [32:16]

39 {

40 $length = $value;

41 }

42 field NextHeader [48:8]

43 {

44 .TCP == 6;

45 .UDP == 17;

46 .ICMP == 58;

47 }
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48 switch (NextHeader)

49 {

50 case TCP : goto ServicePorts;

51 case UDP : goto ServicePorts;

52 case ICMP: goto ICMP;

53 }

54 }

55 protocol ServicePorts

56 {

57 field SourcePort [0:16]

58 {

59 .SSH == 22;

60 .DNS == 53;

61 }

62 field DestinationPort [16:16]

63 {

64 .SSH == 22;

65 .DNS == 53;

66 }

67 }

68 protocol ICMP

69 {

70 field Type [0:8];

71 field Code [8:8];

72 }

73 main()

74 {

75 filter tcp = IPv4.Protocol.TCP || IPv6.NextHeader.TCP;

76 filter udp = IPv4.Protocol.UDP || IPv6.NextHeader.UDP;

77 filter icmp = ICMP;

78 filter arp = ARP;

79
80 filter ssh = ServicePorts.SourcePort.SSH || ServicePorts.DestinationPort

.SSH;

81 filter dns = ServicePorts.SourcePort.DNS || ServicePorts.DestinationPort

.DNS;

82
83 int srcport = ServicePorts.SourcePort;

84 int dstport = ServicePorts.DestinationPort;

85
86 int icmptype = ICMP.Type;

87 int icmpcode = ICMP.Code;

88 }
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D.4.3 Program C3

1 protocol Ethernet

2 {

3 field EtherType [96:16]

4 {

5 .IPv4 == 0x800;

6 .IPv6 == 0x86DD;

7 }

8 switch(EtherType)

9 {

10 case IPv4: goto IPv4;

11 case IPv6: goto IPv6;

12 }

13 }

14 protocol IPv4

15 {

16 field IHL [4:4]

17 {

18 $length = $value * 4;

19 }

20 field Protocol [72:8]

21 {

22 .ICMP == 1;

23 .TCP == 6;

24 .UDP == 17;

25 }

26 switch (Protocol)

27 {

28 case TCP : goto TCP;

29 case UDP : goto UDP;

30 case ICMP: goto ICMP;

31 }

32 }

33 protocol IPv6

34 {

35 field PayloadLength [32:16]

36 {

37 $length = $value;

38 }Linux CookedCapture Header

39
40
41 field NextHeader [48:8]

42 {
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43 .TCP == 6;

44 .UDP == 17;

45 .ICMP == 58;

46 }

47 switch (NextHeader)

48 {

49 case TCP : goto TCP;

50 case UDP : goto UDP;

51 case ICMP: goto ICMP;

52 }

53 }

54 protocol TCP

55 {

56 field SourcePort [0:16];

57 field DestinationPort [16:16];

58 field SequenceNumber [32:32];

59 field AcknowledgmentNumber [64:32];

60 }

61 protocol UDP

62 {

63 field SourcePort[0:16];

64 field DestinationPort[16:16];

65 field Length [32:16];

66 }

67 protocol ICMP

68 {

69 field Type [0:8];

70 field Code [8:8];

71 }

72
73 main()

74 {

75 filter icmp = ICMP;

76 filter tcp = TCP;

77 filter udp = UDP;

78
79 filter ftp_src = TCP.SourcePort == 21 || TCP.DestinationPort == 21;

80 filter smtp = TCP.SourcePort == 25 || TCP.DestinationPort == 25;

81 filter http = TCP.SourcePort == 80 || TCP.DestinationPort == 80;

82
83 filter ssh = TCP.SourcePort == 22 || TCP.DestinationPort == 22 || UDP.

SourcePort == 22 || UDP.DestinationPort == 22 ;

84 filter dns = TCP.SourcePort == 53 || TCP.DestinationPort == 53 || UDP.

SourcePort == 53 || UDP.DestinationPort == 53 ;
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85 filter dhcp = UDP.SourcePort == 68 && UDP.DestinationPort == 67 || UDP.

SourcePort == 67 && UDP.DestinationPort == 68;

86
87 filter dhcpv6 = UDP.SourcePort == 546 && UDP.DestinationPort == 547 ||

UDP.SourcePort == 547 && UDP.DestinationPort == 546 || TCP.

SourcePort == 546 && TCP.DestinationPort == 547 || TCP.SourcePort ==

547 && TCP.DestinationPort == 546;

88
89 int ethertype = Ethernet.EtherType;

90
91 int tcpsrcport = TCP.SourcePort;

92 int tcpdestport = TCP.DestinationPort;

93 int tcpseqno = TCP.SequenceNumber;

94 int tcpackno = TCP.AcknowledgmentNumber;

95
96 int udpsrcport = UDP.SourcePort;

97 int udpdestport = UDP.DestinationPort;

98 int udplen = UDP.Length;

99
100 int icmptype = ICMP.Type;

101 int icmpcode = ICMP.Code;

102 }



E
Program Source

The complete program source for components discussed in this research may be
found at https://github.com/anottingham/PhdResearch.
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